Course code	Course Name	L-T-P - Credits	Year of Introduction 2016			
**352	Comprehensive Examination	0-1-1-2				
Prerequisite : Nil						

Course Objectives

- To assess the comprehensive knowledge gained in basic courses relevant to the branch of study
- To comprehend the questions asked and answer them with confidence.

Assessment

Oral examination – To be conducted by the college (@ three students/hour) covering all the courses up to and including V semester– 50 marks

Written examination - To be conducted by the Dept. on the date announced by the University–common to all students of the same branch – objective type (1 hour duration)–50 multiple choice questions (4 choices) of 1 mark each covering the six common courses of S1&S2 and six branch specific courses listed – questions are set by the University - no negative marks – 50 marks.

Note: Both oral and written examinations are mandatory. But separate minimum marks is not insisted for pass. If a students does not complete any of the two assessments, grade I shall be awarded and the final grade shall be given only after the completion of both the assessments. The two hours allotted for the course may be used by the students for discussion, practice and for

oral assessment.

Expected outcome.

• The students will be confident in discussing the fundamental aspects of any engineering problem/situation and give answers in dealing with them

Sree Narayana Guru College of Engineering & Technology

CHALAKKODE P.O., KOROM, PAYYANUR, KANNUR-670 307

LIST OF STUDENTS ATTENDED COMPREHENSIVE WORK (2020-21)

SL NO:	REGISTER NO.	NAME	
1.	SNC18CE001	ABHIYUKTHA P V	
2.	SNC18CE002	ADITHYAN D	
	SNC18CE003	AKASH ASHOK	
3.	SNC18CE004	AKSHAY KRISHNAN	
4.	SNC18CE005	AMAL PR	
5.	SNC18CE006	AMRITHA A V	
6.	SNC18CE007	ANJIMA B P	
7. 8.	SNC18CE008	ANUSREE . V	
9.	SNC18CE010	ARJUN DEV	
10.	SNC18CE011	ARYA RAMESH	
11.	SNC18CE012	ASHMITH K . P	
12.	SNC18CE013	AYSHA NASREEN	
13.	SNC18CE014	DHANUSH C P	
14.	SNC18CE015	DRISHYA P V	
15.	SNC18CE016	FATHIMATHUL SANA CC	
16.	SNC18CE017	HIBA FAROOK AYAR	
17.	SNC18CE018	KAVYA MANOJ	
18.	SNC18CE019	KIRAN K	
19.	SNC18CE020	LAXMI RANJITH	
20.	SNC18CE021	MITHUNA V P	وبر
	SNC18CE022	M JUMANA HASEEN	
21.	SNC18CE023	MOHAMMAD SHAZIN SHAN Dr. LEEI PRINC	

22	SNC18CE024	MOHAMMED MUHSIN T V
23.	SNC18CE025	MOHAMMED NIHAD P VALIYAKATH
24.	SNC18CE026	NANDITHA BABU
25.	SNC18CE027	PRANAV V PRAKASH
26. 27.	SNC18CE028	RAHUL P
28.	SNC18CE029	REVATHI K
29.	SNC18CE030	RIYAZE KHALID K T
30.	SNC18CE031	SAFA AMEER
31.	SNC18CE032	SAFIYATH A P V
32.	SNC18CE033	SAFVAN HARIS
33.	SNC18CE034	SANAGHA
34.	SNC18CE035	SANIKA SUJITH
35.	SNC18CE036	SHAFANA SHAFI SHIFANA MUHAMMED ASHRAF
36.	SNC18CE037	SHIKHIL K K
37.	SNC18CE038	SHIRHIL KK SHIREEN SADIQUE
38.	SNC18CE039	SREEMAI BAIJU
39.	SNC18CE040	SREYA KRISHNA K V
40.	SNC18CE041 SNC16CE014	FATHIMA ABDUL KAREEM
41.	SNC16CE014 SNC17CE003	ADARSH S V
42.	SNC17CE003	ANAGHA K
43.	SNC17CE012	ANJANA T
44.	SNC17CE022	AYSHA RIZWANA A K
45.	SNC17CE023	DILSHA M E
46.	SNC17CE025	GOPIKA P.V
47.	SNC17CE040	SHARFANA JAFAR
48.		- Retr

	B-TECH IN CO	OMPUTER SCIENCE AND ENGINEERING
1.	SNC18CS001	ADIL BIN ANWAR C P
2.	SNC18CS002	ADITH VINOD
3.	SNC18CS003	AISWARYA SURENDRAN P P
4.	SNC18CS005	AKHIL DAS M V
5.	SNC18CS006	AKSHAYA M K
6.	SNC18CS007	AMITHA RAJAN E V ASEEM AHAMED A K
7.	SNC18CS008 SNC18CS009	ASHAMOL P R
8.	SNC18CS009	ASISH SURESH
9.	SNC18CS011	BHAVYA . N
10.	SNC18CS012	C ATHIRA
11.	SNC18CS013	FIZA FATHIMA
12.	SNC18CS014	GOKUL RAJ K
14.	SNC18CS015	JITHIN V
15.	SNC18CS016	JYOTHIS R
16.	SNC18CS017	LAVANYA PRASAD MUBASHIRA
17.	SNC18CS018 SNC18CS019	MUHAMMED NIHAL K V
18.	SNC18CS020	MUHAMMED SHAHIN
19.	SNC18CS021	MUHAMMED SWAFWAN
20.	SNC18CS022	NITHIN RAJ V V
21.	SNC18CS023	PRANAV P N
22.	SNC18CS024	PRANOY PRAMOD
24.	SNC18CS025	P VISHNU
25.	SNC18CS026	RIKITH C K
26.	SNC18CS027	SALMATH SP Dr. LEENA A V

27.	SNC18CS028	SANDRA M
28.	SNC18CS029	SHAMEEM . K . V
29.	SNC18CS030	SHIRIN MUSTHAFA P . P
30.	SNC18CS031	SIDHARTH S BABU
31.	SNC18CS032	SREEHARI . K
32.	SNC18CS033	VISMAYA SREEJITH
33.	SNC18CS034	V V ARWA
34.	STM18CS031	RITHIKA SATHEESH BABU
35.	STM18CS035	SAHIL HEMANTH
36.	LSNC18CS035	ANASWARA RAJAN
37.	SNC17CS001	ABHISHEK N

	SNC18EC001	APARNA SAJIKUMAR
	SNC18EC002	ASWATHI ASHOKAN
2.	Siterezettz	
_	SNC18EC003	DHANUSH PUTHALATH
3.	SNC18EC004	HRITHIKA . K . V
4.	SINCIOLCOOT	
	SNC18EC005	MABITHA C
5.		The second of th
	SNC18EC006	REMNA P
6.	SNC18EC007	SNEHA SURENDRAN N
7.	SNCIOLCOOT	
7.	LSNC18EC008	VRINDA RAMACHANDRAN . K
8.		

	B-TECH IN ELECTRIC	CH IN ELECTRICAL AND ELECTRONICS ENGINEERING			
1	SNC18EE002	ASHWANTH VALSAN M V			
2.	SNC18EE003	NIDHIM RAJ P P			

B-TECH IN MECHANICAL ENGINEERING				
	SNC18ME001	ABHIRAM M		
	SNC18ME002	ABHIRAM S		
	SNC18ME003	ABHISHEK DHANARAJ		
	SNC18ME005	AFNAN ABDUL NASAR		
	SNC18ME006	AKASH M		
,	SNC18ME007	AMALJITH PUTHUSSERY		
5.		ARJUN P. K		
7.	SNC18ME010			
8.	SNC18ME011	ARJUN T.P		
	SNC18ME012	ASWIN O		
9	SNC18ME013	GANESH K V		
10.	SNC18ME015	JUNAID AHAMED K V		
11.	SNC18ME017	MOHAMMED YUNUS		
12.	SNC18ME018	MUHAMMAD SHAMIR K		
13.		MUHAMMED AJMAL ABDULLA		
14.	SNC18ME019	NIKHIL KRISHNA MV		
15.	SNC18ME021			
	SNC18ME022	NIVED K		
16.	SNC18ME024	PRAVEEN V V		
17.	SNC18ME025	RAHUL RAVI P M		
18.	SNC18ME026	REJIL MANOHARAN		
19.	SNC18ME027	VIJIL P		
20.		VISHNU JAYENDRAN P V		
21.	SNC18ME028	VYSHNAV K		
22.	SNC18ME029	V 13HVA A		

SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING

BATCH (2018-2022)

ROLL NO	REGISTER NO	NAME OF STUDENT
1	SNC18ME001	ABHIRAM M
2	SNC18ME002	ABHIRAM S
3	SNC18ME003	ABHISHEK DHANARAJ
4	SNC18ME005	AFNAN ABDUL NASAR
5	SNC18ME006	AKASH M
6	SNC18ME007	AMALJITH PUTHUSSERY
7	SNC18ME010	ARJUN P. K
8	SNC18ME011	ARJUN T.P
9	SNC18ME012	ASWIN O
10	SNC18ME013	GANESH K V
11	SNC15ME024	HRISHIKESH VINOD
12	SNC18ME015	JUNAID AHAMED K V
13	SNC18ME017	MOHAMMED YUNUS
14	SNC18ME018	MUHAMMAD SHAMIR K
15	SNC18ME019	MUHAMMED AJMAL ABDULLA
16	SNC18ME021	NIKHIL KRISHNA MV
17	SNC18ME022	NIVED . K.
18	SNC17ME026	NIVED KM
19	SNC18ME024	PRAVEEN V V
20	SNC18ME025	RAHUL RAVI P M
21	SNC18ME026	REJIL MANOHARAN
22	SNC18ME027	VIJIL P
23	SNC18ME028	VISHNU JAYENDRAN P V
24	SNC18ME029	VYSHNAV K

Abhoram S

SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING

MOCK TEST 1

- 1. What is fluid mechanics?
- a) Study of fluid behaviour at rest
- b) Study of fluid behaviour in motion
- Study of fluid behaviour at rest and in motion
- d) Study of fluid behaviour at rest and in motion
- 2. Which of the following is the basic principle of fluid mechanics?
- a) Momentum principle
- b) Energy equation
- c) Continuity equation
- All of the mentioned
- 3. Stress strain curve for cemented tungsten carbide is:
- a) Hyperbola
- b) Parabola
- c) A curve
- d) Straight line
 - 4. Which of the following relation is stated by Hooke's law?
- (a) Stress is directly proportional to strain
 - b) Stress is inversely proportional to strain
 - c) Stress is directly proportional to square of strain
 - d) Stress is inversely proportional to square of strain
 - 5. Which of the following is an application of thermodynamics?
 - a) Refrigerators
 - b) Gas compressors
 - () Power plants
 - d) All of the mentioned
 - 6. Which of the following is a type of thermodynamic system?
 - a) Open system
 - b) Closed system
 - c) Thermally isolated system
 - d) All of the mentioned
 - 7./Which of the following occurs without a change in the internal energy?
- a) Isochoric process
- b) Isenthalpic process

Dr. LEENA A. V.

PRINCIPAL

SREE NARAYANA GURU COLLEGE C

NGINEERING & TECHNOLOGY, PAYYA

- c) Steady-state process d) Isenthalpic process
- 8. Which of the following properties must a material possess to be used in mold making?
- a) High refractoriness
- b) Chemical and thermal stability
- c) High permeability
- All of the mentioned
- 9. Which of the following group of material type is used in mold making?
- a) Metallic only
- b) Non-Metallic only
- C) Both metallic as well as non-metallic
 - d) Neither metallic nor non-metallic
 - 10. How many types of nucleation process are there and what are they?
 - a) 2 and (fusion and fission)
- (b) 2 and (Heterogeneous and Homogeneous)
 - c) 2 and (Heterogeneous and fusion)
 - d) 4 and (fusion, fission, Heterogeneous and Homogeneous)

View Answer

- 11. What reactions come under supercooling?
- a) Peritectic
- b) Eutectic and Peritectic
- Eutectic and Eutectoid
- d) Peritectic and Eutectoid
- 12 Which is the most important thermodynamic parameter in Homogenous nucleation?
- (a) Free energy G
- b) Enthalpy H
- c) Entropy S
- d) Free energy G, Enthalpy H, Entropy S

View Answer

- 13. What does phase transformation involve?
- a) Transformation rates kinetics
- b) Movement/rearrangement of atoms
- c) Changes in microstructure
- dy Transformation rate kinetics, rearrangement of Atoms, Changes in microstructure
- 14. What is the full form of ASTM?
- a) American society for testing and materials
- b) African society for testing and materials
- c) American society for torque and momentum forces
- d) American society for tensile motion forces
- 15. Which of the following is not the structural characteristic of a polycrystalline specimen?
- (a) Shape
- b) Average size

PRINCIPAL

SREE NARAYANA GURU COLLEGE C

INGINEERING & TECHNOLOGY, PAYYAN

c) Reactivity d) Diameter 16. Which of a) Cooling fo

16. Which of the following refers to the term C.O.P. of refrigeration?

- a) Cooling for Performance
- (b) Coefficient of Performance
 - c) Capacity of Performance
 - d) Co-efficient of Plant
 - 17. Why sustainable manufacturing is required?
 - a) proper maintenance
 - b) reuse
 - c) conserving resources
 - d) all of the mentioned
 - 18 Which of the following is a thermodynamics law?
 - a) Zeroth law of thermodynamics
 - b) Faraday's Law of thermodynamics
 - .c) Ideal Gas Law of thermodynamics
 - d) Boyle's Law of thermodynamics
 - 19. Which of the following systems produce a vibration in the foundation?
- (a) Unbalanced machine
 - b) Balanced machine
 - c) Coupled machine
 - d) Uncoupled machine
 - 20. Which of the following is a type of fluid based on viscosity?
 - a) Real Fluid
 - b) Ideal Fluid
 - c) Newtonian Fluid
 - d) All of the mentioned
 - 21. The viscous force the relative motion between the adjacent layers of a fluid in motion. Which of the following flowing fits best in the sentence?
 - a) never affects
 - b) may effect under certain conditions
 - c) facilitates
 - d) opposes

View Answer

- 22. Pressure intensity or force due to pressure gradient for fluid at rest is considered as which of the following kind of force?
- a) Body force
- b) Førce due to motion
- c) Surface force
- d) None of the mentioned

Xee

PRINCIPAL

PRINCIPAL

PREE NARAYANA GURU COLLEGE CONGINEERING & TECHNOLOGY, PAVYANKANNUR

- 23. The enthalpy and internal energy are the function of temperature for
- a) all gases
- b) steam
- c) water
- d) ideal gas
- 24. In which of the following systems does mass transfer occur across the system boundary?
- a) isolated system
- b) closed system
- open system
- d) none of the mentioned
- 25. When more than one fluid stream enters or leaves the control volume, which of the following type of balance is taken?
- a) mass balance
- , b) energy balance
 - c) mass balance and energy balance
 - d) none of the mentioned

Xem

Granesh K-V

SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING

MOCK TEST 1

- 1. What is fluid mechanics?
- a) Study of fluid behaviour at rest
- b) Study of fluid behaviour in motion
- Study of fluid behaviour at rest and in motion
- d) Study of fluid behaviour at rest and in motion
- 2. Which of the following is the basic principle of fluid mechanics?
- a) Momentum principle
- b) Energy equation
- c) Continuity equation
- All of the mentioned
- 3. Stress strain curve for cemented tungsten carbide is:
- a) Hyperbola
- b) Parabola
- A curve
- d) Straight line
- 4. Which of the following relation is stated by Hooke's law?
- Stress is directly proportional to strain
 - b) Stress is inversely proportional to strain
- c) Stress is directly proportional to square of strain
- d) Stress is inversely proportional to square of strain
- 5. Which of the following is an application of thermodynamics?
- a) Refrigerators
- b) Gas compressors
- c) Power plants
- d) All of the mentioned
- 6. Which of the following is a type of thermodynamic system?
- a) Open system
- b) Closed system
- c) Thermally isolated system
- d) All of the mentioned
- 7. Which of the following occurs without a change in the internal energy?
- a) Isochoric process
- b) Isenthalpic process

Leve

PRINCIPAL

SREE NARAYANA GURU COLLEGE OF THE SHEET NARAYANA GURU COLLEGE OF THE SHEET NAME OF T

- c) Steady-state process d) Isenthalpic process
- 8. Which of the following properties must a material possess to be used in mold making?
- a) High refractoriness
- b) Chemical and thermal stability
- High permeability
- d) All of the mentioned
- 9. Which of the following group of material type is used in mold making?
- a) Metallic only
- b) Non-Metallic only
- Both metallic as well as non-metallic
- d) Neither metallic nor non-metallic
- 10. How many types of nucleation process are there and what are they?
- a) 2 and (fusion and fission)
- b) 2 and (Heterogeneous and Homogeneous)
- 2 and (Heterogeneous and fusion)
 - d) 4 and (fusion, fission, Heterogeneous and Homogeneous)

View Answer

- 11. What reactions come under supercooling?
- a) Peritectic
- b) Eutectic and Peritectic
- c) Eutectic and Eutectoid
- d) Peritectic and Eutectoid
- 12. Which is the most important thermodynamic parameter in Homogenous nucleation?
- a) Free energy G
- b) Enthalpy H
- c) Entropy S
- d) Free energy G, Enthalpy H, Entropy S

View Answer

- 13. What does phase transformation involve?
- a) Transformation rates kinetics
- b) Movement/rearrangement of atoms
- c) Changes in microstructure
- (1) Transformation rate kinetics, rearrangement of Atoms, Changes in microstructure
 - 14 What is the full form of ASTM2
- a) American society for testing and materials
 - b) African society for testing and materials
 - c) American society for torque and momentum forces
 - d) American society for tensile motion forces
 - 15. Which of the following is not the structural characteristic of a polycrystalline specimen?
 - a) Shape
- b) Average size

- c) Reactivity d) Diameter 16. Which of a) Cooling for b) Coefficient c) Capacity of
- 16. Which of the following refers to the term C.O.P. of refrigeration?
- a) Cooling for Performance
- b) Coefficient of Performance
 - c) Capacity of Performance
 - d) Co-efficient of Plant
 - 17. Why sustainable manufacturing is required?
 - a) proper maintenance
 - b) reuse
- c) conserving resources
 - d) all of the mentioned
 - 18. Which of the following is a thermodynamics law?
 - a) Zeroth law of thermodynamics
 - b) Faraday's Law of thermodynamics
- Ideal Gas Law of thermodynamics
 - d) Boyle's Law of thermodynamics
 - 19 Which of the following systems produce a vibration in the foundation?
- a) Unbalanced machine
- b) Balanced machine
- c) Coupled machine
- d) Uncoupled machine
- 20. Which of the following is a type of fluid based on viscosity?
- a) Real Fluid
- W Ideal Fluid
 - c) Newtonian Fluid
 - d) All of the mentioned
 - 21. The viscous force the relative motion between the adjacent layers of a fluid in motion. Which of the following flowing fits best in the sentence?
 - a) never affects
- b) may effect under certain conditions
 - c) facilitates
 - d) opposes

View Answer

- 22. Pressure intensity or force due to pressure gradient for fluid at rest is considered as which of the following kind of force?
- a) Body force
- b) Force due to motion
- Surface force
- d) None of the mentioned

Xem

PRINCIPAL

SREE NARAYANA GURU COLLEGE OF
ENGINEERING & TECHNOLOGY, PAVYAN
KANNUR

23. The enthalpy and internal energy are the function of temp	perature for
---	--------------

- a) all gases
- b) steam
- c) water
- d) ideal gas
 - 24. In which of the following systems does mass transfer occur across the system boundary?
 - a) isolated system
 - b) closed system
 - c) open system
- d) none of the mentioned
- 25. When more than one fluid stream enters or leaves the control volume, which of the following type of balance is taken?
- a) mass balance
- b) energy balance
 - c) mass balance and energy balance
 - d) none of the mentioned

Vejrol P

SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING

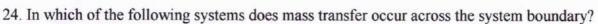
MOCK TEST 1

- 1. What is fluid mechanics?
- a) Study of fluid behaviour at rest
- b) Study of fluid behaviour in motion
- c) Study of fluid behaviour at rest and in motion
- d) Study of fluid behaviour at rest and in motion
- 2. Which of the following is the basic principle of fluid mechanics?
- a) Momentum principle
- b) Energy equation
- c) Continuity equation
- d) All of the mentioned
- 3. Stress strain curve for cemented tungsten carbide is:
- a) Hyperbola
- b) Parabola
- c) A curve ~
- d) Straight line
- 4. Which of the following relation is stated by Hooke's law?
- a) Stress is directly proportional to strain ~
- b) Stress is inversely proportional to strain
- c) Stress is directly proportional to square of strain
- d) Stress is inversely proportional to square of strain
- 5. Which of the following is an application of thermodynamics?
- a) Refrigerators
- b) Gas compressors
- c) Power plants
- d) All of the mentioned ~
- 6. Which of the following is a type of thermodynamic system?
- a) Open system
- b) Closed system
- c) Thermally isolated system
- d) All of the mentioned ~
- 7. Which of the following occurs without a change in the internal energy?
- a) Isochoric process
- b) Isenthalpic process

c) Steady-state process d) Isenthalpic process 8. Which of the following properties must a material possess to be used in mold making? a) High refractoriness b) Chemical and thermal stability c) High permeability ~ d) All of the mentioned 9. Which of the following group of material type is used in mold making? a) Metallic only ~ b) Non-Metallic only c) Both metallic as well as non-metallic. d) Neither metallic nor non-metallic 10. How many types of nucleation process are there and what are they? a) 2 and (fusion and fission) b) 2 and (Heterogeneous and Homogeneous) c) 2 and (Heterogeneous and fusion) d) 4 and (fusion, fission, Heterogeneous and Homogeneous) View Answer 11. What reactions come under supercooling? a) Peritectic b) Eutectic and Peritectic c) Eutectic and Eutectoid d) Peritectic and Eutectoid 12. Which is the most important thermodynamic parameter in Homogenous nucleation? a) Free energy G b) Enthalpy H c) Entropy S d) Free energy G, Enthalpy H, Entropy S View Answer 13. What does phase transformation involve? a) Transformation rates kinetics b) Movement/rearrangement of atoms c) Changes in microstructure \checkmark d) Transformation rate kinetics, rearrangement of Atoms, Changes in microstructure 14. What is the full form of ASTM? a) American society for testing and materials \ b) African society for testing and materials c) American society for torque and momentum forces d) American society for tensile motion forces 15. Which of the following is not the structural characteristic of a polycrystalline specimen?

a) Shape

b) Average size


Dr. LEENA A. V.
PRINCIPAL

REE NARAYANA GURU COLLEGE OF THE NICE O

c) Reactivity
d) Diameter
u) Diameter
16. Which of the following refers to the term C.O.P. of refrigeration?
a) Cooling for Performance
b) Coefficient of Performance
c) Capacity of Performance
d) Co-efficient of Plant
17 Who are the inchia areas of attacks in a coming 49
17. Why sustainable manufacturing is required?
a) proper maintenance
b) reuse
c) conserving resources
d) all of the mentioned
18. Which of the following is a thermodynamics law?
a) Zeroth law of thermodynamics
b) Faraday's Law of thermodynamics
c) Ideal Gas Law of thermodynamics
d) Boyle's Law of thermodynamics
19. Which of the following systems produce a vibration in the foundation?
a) Unbalanced machine
b) Balanced machine
c) Coupled machine
d) Uncoupled machine
20. Which of the following is a type of fluid based on viscosity?
a) Real Fluid
b) Ideal Fluid
c) Newtonian Fluid
d) All of the mentioned
21. The viscous force the relative motion between the adjacent layers of a fluid in motion.
Which of the following flowing fits best in the sentence?
a) never affects
b) may effect under certain conditions
c) facilitates
d) opposes
View Answer
2.
22. Pressure intensity or force due to pressure gradient for fluid at rest is considered as which
of the following kind of force?
a) Body force
b) Force due to motion
c) Surface force
d) None of the mentioned
X elin

23. The enthalpy and internal energy are the function of temperature for

- a) all gases "/
- b) steam
- c) water
- d) ideal gas

- a) isolated system
- b) closed system
- c) open system
- d) none of the mentioned

25. When more than one fluid stream enters or leaves the control volume, which of the following type of balance is taken?

- a) mass balance
- b) energy balance
- c) mass balance and energy balance
- d) none of the mentioned

Leve

Dr. LEENA A. V.
PRINCIPAL

SREE NARAYANA GURU COLLEGE OF THE COLLE

SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING

MOCK TEST 2

	The	slope of the surface z	$= xe^{-}$	-y + 5y in the x-direction	at th	ne point (4,0) is		20
	a)	0	b)	-1	c)	1	d)	2
2.	The	solution of		is	/			
	a)	$c_1\cos x+c_2\sinx$	b)	$c_1e^x+c_2e^{-x}$	c)	$(c_1+c_2x)e^x$	d) <	$(c_1+c_2x)e^{-x}$
i.		mple spring mass vibra is is doubled then the n	-	system has a natural free	quenc	ey of N. if the spring s	tiffnes	ss is halved and the
	a)	N	b)	0.5N	c)	2N	4)	0.25N
١.		proportion of second r	nome	ent of area about centroid	dal ax	xis to second moment	of are	a about base of a
	a)	0.3	b)	0.1	c)	0.25	d)	0.08333
i.	An <u>a</u>	lgorithm for schedulin	ıg a s	set of project activities:		- 10		
	a)	Critical Path Method	b)	Crucial Practicing Method	c)	Centre Processing Method	d)	None
),			-	d radical redesign of the of performances such as				atic improvements in
	a)	Recycling	b)	Quality engineering	c)	Contemporary design	d)_	Re - engineering
	Com	posting is						
	a)	anaerøbic degradation	b)	anaerobic treatment	c)	aerobic treatment	d)	an aerobic degradation process
		•						

		process for solid waste treatment		for sullage		for sewage		for solid waste treatment
8.	The r	rating system of India	whic	h is focussed on conser	vation	and efficient energy	use is	
	a)	GRIHA	b)	LEED India	c)	IGBC	<u>d</u>)	BEE
9.	In ort	thographic projection,	each	projection view repres	ents h	ow many dimensions	of an o	object?
	a)	1	b)	2	c)	8	d)	0
10.	The f	ront view, side view	and to	op view of a cylinder sta	anding	on horizontal plane l	oase or	n horizontal plane.
	a)	circle, rectangle and rectangle	b)	rectangle, rectangle and circle	c)	rectangle, circle and rectangle	d)	circle, triangle and triangle
				PART B- COR	E CO	URSES		
11.	Attracti	ve forces between me	tal io	ns and delocalized elec	trons o	can be weakened or o	vercon	ne by
	a)	hammer	b)	high temperature	Q)	water	d)	All of above
12.	Crystall	ine solids can be reco						
	رهر	low boiling point	b)	sharp melting point	c)	colour	d)	moderate melting point
13.	Anneali	ng of steel is done to	impa	rt which of the followin	ig prop	perties to steel?		
	a)	Hardness	b)	Toughness	c)	Ductility	رف	None of the mentioned
14.	Major c	onstituent of the gun	metal	alloy is	/			
	√a)	Copper	b)	Nickel	c)	Iron	d)	Zinc
15.	Which f	ferrous material doesn	't sho	ow fatigue limit?		,		
	a)	Cast iron	b)	Wrought iron	Ć)	Austenitic stainless	d)	Low carbon steel
16.	Which o	of the following method	ods o	f melting is not used for	melti	ng titanium metal?		
	a)	Induction method	b)_	Vaeuum arc method	(c)	Electron beam melting	d)	Cupola furnace melting
17.	A turbin	ne is called impulse if	at the	e inlet of the turbine				
	a)	Total energy is only pressure energy	b)	Total energy is only kinetic energy	c)	Total energy is the sum of kinetic energy and pressure	d)	None of the above
		7	1			energy	X	elle
						SREE NARA	RINCI YANA GU	RU COLLEGE U OLOGY, PAYYANI

	4							
18.	Find the	overall efficiency of	a tur	bine if the mechanical eff	icie	ncy is 80% and hydrau	lic ef	ficiency is 90%
	a)	88	b)	90 /	c)	72	d)	30
19.	In a cen	trifugal pump casing,	the f	low of water leaving the	mpe	eller is		
	A)	Rectilinear flow	b)	Radial flow	c)	Forced vortex flow	d)	Free vortex flow
20.	Hydraul	ic accumulator is a de	evice	used for				
	a)	Lifting heavy weights	b)	Storing the energy of a fluid in the form of pressure energy	c)	Increasing pressure intensity of a fluid	d)	Transmitting pow from one shaft to another shaft

Leve

PRINCIPAL

SKEE NARAYANA GURU COLLEGE ONGINEERING & TECHNOLOGY, PAYYAN
KANNUR

SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING MOCK TEST 2

	The	slope of the surface z	$= xe^{-}$	y + 5y in the x-direction	at th	e point (4,0) is		00
	a)	0	b)	-1	4	1	d)	2
2.	The	solution of		is			>	
	a)	$c_1\cos x+c_2\sinx$	b)	$c_1e^x+c_2e^{-x}$	c)	$(c_1+c_2x)e^x$	_d)_	$(c_1+c_2x)e^{-x}$
3.		nple spring mass vibra is doubled then the na		system has a natural free	quenc	y of N. if the spring st	iffnes	ss is halved and the
	a)	N	b)	0.5N	(s)	2N	d)	0.25N
l.		proportion of second n	nome	ent of area about centroi	dal ax	is to second moment of	of are	a about base of a
	a)	0.3	b)	0.1	c)	0.25	d)	0.08333
5.	An <u>a</u>	lgorithm for schedulin	gas	et of project activities:				
	a)	Critical Path Method	b)	Crucial Practicing Method	c)	Centre Processing	d)	None
5.				l radical redesign of the of performances such as				atic improvements in
	a)	Recycling	b)	Quality engineering	c)	Contemporary design	d)	Re - engineering
7.	Com	posting is						
	a)	anaerobic degradation	b)	anaerobic treatment	c)	aerobic treatment	d)	an aerobic degradation process

PRINCIPAL

SHEE NARAYANA GURU COLLEGE CNGINEERING & TECHNOLOGY, PAYYANG
KANNUR

		process for solid waste treatment		for sullage		for sewage		for solid waste treatment
8.	The r	ating system of India	whic	h is focussed on cor	nservation	and efficient energy	use is	
	a)	GRIHA	b)	LEED India	_(c)	IGBC	<u>d</u>)	BEE
9.	In ort	hographic projection,	each	projection view rep	oresents ho	ow many dimensions	of an c	bject?
	a)	1	b)	2	4	3	d)	0
10.	The f	ront view, side view a	nd to	p view of a cylinde	r standing	on horizontal plane	base on	horizontal plane.
	, a)	circle, rectangle and rectangle	b)	rectangle, rectangle and circle	e c)	rectangle, circle and rectangle	d)	circle, triangle and triangle
				PART B- C	ORE CO	URSES		
11.	Attractiv	ve forces between me	tal io	ns and delocalized of	electrons c	an be weakened or o	vercon	ne by
	a)	hammer	b)	high temperature	A c)	water	d)	All of above
12.	Crystall	ine solids can be reco	gnize	ed by their				
	a)	low boiling point	b)	sharp melting poin	nt c)	colour	d)	moderate melting point
13.	Anneali	ng of steel is done to	mpa	rt which of the follo	wing prop	erties to steel?		
	a)	Hardness	b)	Toughness	(c)	Ductility	_d)-	None of the mentioned
14.	Major c	onstituent of the gun r	netal	alloy is				
	a)	Copper	b)	Nickel 7	(c)	Iron	d)	Zinc
15.	Which f	errous material doesn	t sho	ow fatigue limit?				
	a)	Cast iron	b)	Wrought iron	← c)	Austenitic stainless steel	s d)~	Low carbon steel
16.	Which o	of the following method	ds o	f melting is not used	d for melti	ng titanium metal?		
	a)	Induction method	b)	Vacuum arc meth	od c)	Electron beam melting	d)	Cupola furnace melting
17.	A turbin	e is called impulse if	at the	e inlet of the turbine				
	a)	Total energy is only pressure energy	b)	Total energy is onl kinetic energy		Total energy is the sum of kinetic energy and pressure energy	d)	None of the above
							PRINC	NOLOGY, PAYYA

18.	Find the	overall efficiency of	a tur	oine if the mechanical ef	ficie	ncy is 80% and hydrau	lic ef	fficiency is 90%
	a)	88	b)	90	et	72	d)	30
19.	In a cen	trifugal pump casing,	the f	low of water leaving the	impe	eller is		
	a)	Rectilinear flow	b)	Radial flow	c)	Forced vortex flow	d)	Free vortex flow
20.	Hydraul	ic accumulator is a de	vice	used for				
	a)	Lifting heavy weights	b)	Storing the energy of a fluid in the form of pressure energy	c)	Increasing pressure intensity of a fluid	d)	Transmitting power from one shaft to another shaft
				4	_	-		

SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING MOCK TEST 2

1.	The	slope of the surface z	$= xe^{-}$	-y + 5y in the x-direction	at th	e point (4,0) is		20
	a)	0	b)		c)		d)	2
2.	The	solution of		is		1		
	a)	$c_1 \cos x + c_2 \sin x$	b)	$c_1e^x+c_2e^{-x}$	c)	$(c_1+c_2x)e^x$	_d}	$(c_1+c_2x)e^{-x}$
3.		mple spring mass vibra	-	system has a natural fre l frequency will be	•	,	tiffnes	ss is halved and the
	a)	N	b)	0.5N	c)	2N	d)	0.25N
4.		proportion of second a ngle will be	nome	ent of area about centroi			of are	a about base of a
	a)	0.3	b)	0.1	c)	0.25	d)	0.08333
5.	An <u>a</u>	lgorithm for schedulir	ıg a s	et of project activities:				
	a)	Critical Path Method	b)	Crucial Practicing Method	c)	Centre Processing Method	d)	None
6.				I radical redesign of the of performances such as				atic improvements in
	a)	Recycling	b)	Quality engineering	c)	Contemporary design	d)	Re - engineering
7.	Com	posting is		/				
	a)	anaerobic degradation	b)	anaerobic treatment	ç)	aerobic treatment	d)	an aerobic degradation process

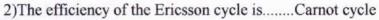
PRINCIPAL

		process for solid waste treatment		for sullage		for sewage		for solid waste treatment
8.	The r	ating system of In	dia which	is focussed on o	conservation	and efficient energ	gy use is	
	a)	GRIHA	b)	LEED India	c) 	IGBO	d)	BEE
9.	In ort	hographic project	ion, each	projection view	represents h	ow many dimensio	ns of an o	bject?
	a)	1	b)	2	(c)	3	d)	0
10.	The f	ront view, side vi	ew and to	p view of a cylin	der standing	g on horizontal plan	ne base on	horizontal plane.
	a)	circle, rectangle and rectangle	b)	rectangle, rectar and circle	ngle c)	rectangle, circle	d)	circle, triangle and triangle
				PART B	CORE CO	DURSES		
11.	Attractiv	ve forces between	metal ior	ns and delocalize	d electrons	can be weakened or	r overcom	ne by
	a)	hammer	b)	high temperatur	e c)	water	d)	All of above
12.		ine solids can be			1.0			
	a)	low boiling poin	t b)	sharp melting p	oint c)	colour	d)	moderate melting point
13.	Anneali	ng of steel is done	to impar	t which of the fo	llowing pro	perties to steel?		
	a)	Hardness	(b)	Toughness	c)	Ductility	d)	None of the mentioned
14.	Major c	onstituent of the g		- /				
	a)	Copper	b)	Nickel	c)	Iron	d)	Zinc
15.	Which f	errous material de	oesn't sho	w fatigue limit?				,
	a)	Cast iron	+b)	Wrought iron	c)	Austenitic stainle steel	ess d)	Low carbon steel
16.	Which o	of the following m	ethods of	melting is not u	sed for melt	ing titanium metal?	•	
	a)	Induction method	b)	Vacuum arc me	ethod c)	Electron beam melting	d)	Cupola furnace melting
17	A tumbin	a is salled immule	a if at the	inlat afthatumb				
17.		ne is called impuls				Total energy is th	e d)	None of the above
	a)	Total energy is only pressure energy	b)	Total energy is kinetic energy	only c)	sum of kinetic energy and pressu energy		None of the above
						-NGIN-	EE NARAYANA	ICIPAL AGURU COLLEGE CONNOCIONAL PROPERTIES C

	-							
18.	Find the	overall efficiency	of a tur	bine if the mechanical et	fficie	ncy is 80% and hydrae	flic et	fficiency is 90%
	a)	88	b)	90	c)_	72/	d)	30
19.	In a cen	trifugal pump casin	g, the f	low of water leaving the	imp	eller is		
	a)	Rectilinear flow	b)	Radial flow	c)	Forced vortex flow	d)	Free vortex flow
20.]	Hydraul	ic accumulator is a	device	used for		4		
	a)	Lifting heavy weights	b)	Storing the energy of a fluid in the form of pressure energy	c)	Increasing pressure intensity of a fluid	d)	Transmitting pow from one shaft to another shaft

SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING

MOCK TEST 3

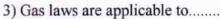

1)In a	system, there is no exchange of matter, but the exchange of energy is	
possible between	system and the surrounding	

A.isolated

B.closed

C)adiabatic

D)More than one of the above



A. Greater than

B. Less than

C.Equal to

D. None of the above

A.Gases as well as vapours

B. Gases alone and not to vapours

C.Gases and steam

D.Gases and vapours under certain conditions

4). General gas equation is......

A.PY = nRT

B.PV = mRT

 $C.PV^n = C$

 $D.C_p - C_v = R/J$

5) Which of the following laws is applicable for the behaviour of perfect gas

A.Boyle's law

B.Charle's law

C.Gas-Lussac law

,DAll of the above

6) When a body floating in a liquid, is displaced slightly, it oscillates about A. C.G. of body

B. Center of pressure

C. Center of buoyancy

D. Metacentre

Dr. LEENA A. V.
PRINCIPAL

PRINCIPAL

PRINCIPAL

PRINCIPAL

PRINCIPAL

PRINCIPAL

REE NARAYANA GURU COLLEGE C.

NGINEERING & TECHNOLOGY, PAYYAN

KANNUR

20

A. Remains constant
B. Increases
C Decreases
D. Depends upon mass of liquid
8)When the Mach number is between the flow is called super-sonic flow. A. 1 and 2.5
B. 2.5 and 4
C. 4 and 6
D. 1 and 6
9)Steady flow occurs when A. The direction and magnitude of the velocity at all points are identical
B. The velocity of successive fluid particles, at any point, is the same at successive periods of time
C. The magnitude and direction of the velocity do not change from point to point in the fluid
D. The fluid particles move in plane or parallel planes and the streamline patterns are identical in each plane
10)A fluid which obeys the Newton's law of viscosity is termed as A. Real fluid
B. Ideal fluid
. Newtonian fluid
D. Non-Newtonian fluid
11). Hooke's law essentially defines
A. Stress
B. Strain
C. Yield point
D. Elastic limit

PRINCIPAL

PRINCIPAL

REE NARAYANA GURU COLLEGE U

NGINEERING & TECHNOLOGY, PAYVAN

KANNUR

12) The ratio of the change in dimension at right angles to the applied force to the initial dimension is known as
A. Youngs' modulus B. Pøisson's ratio C. Lateral strain D. Shearing strain
13) Substances that can be stretched to cause large strains are called
A. Brittle B. Ductile C. Plastic D. Elastomer
14) Volumetric Strain is
(a)Increase in length / original length
(b)Decrease in length / original length
(c) Change in volume / original volume
(d)All of the above
15) Poisson's ratio is
A)Lateral strain / Longitudinal strain
b. Shear strain / Lateral strain
c. Longitudinal strain / Lateral strain
d. Lateral strain / Volumetric strain
16) 5. Pick the composite from the list
(a) Wood
(b) Steel

(c) Nylon

(d) Mica

17) Repeatable entity of a crystal structure is known as
a) Crystal
b) Lattice
CyUnit cell
d) Miller indices
18)Coordination number for closest packed crystal structure
a) 16.
b) 12
c) 8
d) 4
19) Atomic packing factor is
Distance between two adjacent atoms
b) Projected area fraction of atoms on a plane
c) Volume fractionof atoms in cell
d)None
20. Coordination number in simple cubic crystal structure
a) 1
b/6
c) 3
d)4

PRINCIPAL

PRINCIPAL

PRINCIPAL

REE NARAYANA GURU COLLEGE C

NGINEERING & TECHNOLOGY, PAYYAN

KANNUR

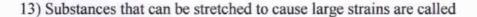
SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING MOCK TEST 3

1)In a system, there is no exchange of matter, but the exchange of energy possible between system and the surrounding
A.isolated
D.closed
C)adiabatic
D)More than one of the above
2)The efficiency of the Ericsson cycle isCarnot cycle A.Greater than U.B.Less than C.Equal to D.None of the above
3) Gas laws are applicable to A.Gases as well as vapours B.Gases alone and not to vapours C.Gases and steam D.Gases and vapours under certain conditions
4). General gas equation is A.PV = nRT B.PV = mRT C.PV ⁿ = C D.C _p - C _v = R/J
5) Which of the following laws is applicable for the behaviour of perfect gas A.Boyle's law B. harle's law C.Gas-Lussac law D.All of the above
6)When a body floating in a liquid, is displaced slightly, it oscillates about A. C.G. of body
B. Center of pressure

C. Center of buoyancy

D. Metacentre

Dr. LEENA A. V.
PRINCIPAL


SREE NARAYANA GURU COLLEGE C.
NGINEERING & TECHNOLOGY, PAYYA
KANNUR

is

A. Remains constant
B. Increases
C. Decreases
D. Depends upon mass of liquid
8)When the Mach number is between the flow is called super-sonic flow. A. 1 and 2.5
B 2.5 and 4
C. 4 and 6
D. 1 and 6
9)Steady flow occurs when A. The direction and magnitude of the velocity at all points are identical
B. The velocity of successive fluid particles, at any point, is the same at successive periods of time
C. The magnitude and direction of the velocity do not change from point to point in the fluid
D. The fluid particles move in plane or parallel planes and the streamline patterns are identical in each plane
10)A fluid which obeys the Newton's law of viscosity is termed as A. Real fluid
B. Ideal fluid
C. Newtonian fluid
D. Non-Newtonian fluid
11). Hooke's law essentially defines
A. Stress B. Strain
C. Yield point D. Flastic limit

12) 7	The ratio of th	e change in	dimension	at right	angles to	the applie	d force t	o the	initial
dime	nsion is know	m as							

- A. Youngs' modulus
- B. Pøisson's ratio
- C. Lateral strain
- D. Shearing strain

- A. Brittle
- B. Ductile
- C. Plastic
- D. Elastomer

14) Volumetric Strain is

- (a)Increase in length / original length
- (b)Decrease in length / original length
- (c)Change in volume / original volume
- (d)All of the above
- 15) Poisson's ratio is
- a)Lateral strain / Longitudinal strain
- Shear strain / Lateral strain

c. Longitudinal strain / Lateral strain

- d. Lateral strain / Volumetric strain
- 16) 5. Pick the composite from the list
- (a) Wood
- (b) Steel
- (c) Nylon
- (d) Mica

PRINCIPAL

SREE NARAYANA GURU COLLEGE C

NGINEERING & TECHNOLOGY, PAYYA

17) Repeatable entity of a crystal structure is known as
a) Crystal
b) Lattice
c)Unit cell
d) Miller indices
18)Coordination number for closest packed crystal structure
a) 16
b) 12
c) 8
d) 4
19)Atomic packing factor is
a) Distance between two adjacent atoms
b) Projected area fraction of atoms on a plane
c). Volume fraction of atoms in cell
d)None
20. Coordination number in simple cubic crystal structure
ari T
b) 6
c) 3
d)4