

Sree Narayana Guru College of Engineering & Technology

CHALAKKODE P.O., KOROM, PAYYANUR, KANNUR-670 307

PORTING DOCUMENTS OF COMPREHENSIVE EXAM	SUP
TING DOCUMENTS OF COMPREHENSIVE EXAM	POR
IG DOCUMENTS OF COMPREHENSIVE EXAM	TIN
DOCUMENTS OF COMPREHENSIVE EXAM	G
OCUMENTS OF COMPREHENSIVE EXAM	\mathbf{D}
UMENTS OF COMPREHENSIVE EXAM	\mathcal{C}
MENTS OF COMPREHENSIVE EXAM	TIN
NTS OF COMPREHENSIVE EXAM	ИF
S OF COMPREHENSIVE EXAM	NT
OF COMPREHENSIVE EXAM	S
COMPREHENSIVE EXAM	OF
OMPREHENSIVE EXAM	\mathbf{C}
APREHENSIVE EXAM	ON
REHENSIVE EXAM	/P
HENSIVE EXAM	RF
ENSIVE EXAM	HF
SIVE EXAM	N.
E EXAM	SIV
EXAN	Æ.
AN	FX
	AN

CET308	COMPREHENSIVE	CATEGORY	LT		P	CREDIT	Year of Introduction		
	COURSE WORK	PCC	1	0	0	1	2019		

Preamble: The course is designed to ensure that the student have firmly grasped the foundational knowledge in Civil Engineering familiar enough with the technological concepts. It provides an opportunity for the students to demonstrate their knowledge in various Civil Engineering subjects.

Pre-requisite: Nil

Course outcomes: After the course, the student will able to:

CO1	Learn to prepare for a competitive examination
CO2	Comprehend the questions in Civil Engineering field and answer them with confidence
CO3	Communicate effectively with faculty in scholarly environments
CO4	Analyze the comprehensive knowledge gained in basic courses in the field of Civil Engineering

			P	P	P	P	P	P	P	P	P	PO	PO	PO	PS	PS	PS
	nsive		0	0	0	0	0	0	0	0	0	10	11	12	01	O2	O3
CET 308	hens Wo	CO1	3	1	1			2							1	1	
	mpre	CO2	3	1				2				3					
	Con	CO3	3	1			1	2				3				1	
		CO4	3	3			1	2									

Assessment pattern

Bloom's Category	End Semester Examination (Marks)
Remember	25
Understand	15
Apply	5
Analyze	5
Evaluate	
Create	

End Semester Examination Pattern:

A written examination will be conducted by the University at the end of the sixth semester. The written examination will be of objective type similar to the GATE examination. Syllabus for the comprehensive examination is based on following five Civil Engineering core courses.

CET 201- Mechanics of Solids

CET 203- Fluid Mechanics and Hydraulics

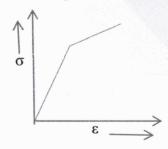
CET 205- Surveying& Geomatics

CET 204- Geotechnical Engineering I

CET 309-Construction Technology and Management

The written test will be of 50 marks with 50 multiple choice questions (10 questions from each module) with 4 choices of 1 mark each covering all the five core courses. There will be no negative marking. The pass minimum for this course is 25. The course should be mapped with a faculty and classes shall be arranged for practising questions based on the core courses listed above.

Written examination


50marks

Total

50 marks

Course Level Assessment and Sample Questions:

- 1) Poisson's ratio for an incompressible isotropic material is: A) 0.25 B) 0.5 C) Zero D) Indeterminate
- 2) The following stress-strain curve is obtained for a material. It indicates

- A) Rigid body behaviour
- B) Perfectly plastic behaviour

Dr. LEENA A. V. PRINCIPAL

- C) Elastic-linear strain hardening behaviour
- D) Elastic-plastic behaviour
- 3) A principal plane is one where the shear stress will be:
 - A) Maximum B) Minimum C) Zero D) Coverage of principal stress
- 4) In a differential manometer, the flowing fluid is water and the gauge fluid is mercury. If the manometer reading is 100mm, the differential head in meters is:
 - A) 13.6
- B) 1.36
- C)1.47
- D)1.26
- 5) A rectangular open channel carries a flow of 2m³/sec/m, what is the value of minimum specific energy?
 - A) 0.74m B) 1.11m C) 1.48m D) 1.85m
- 6) A pipe has diameter 0.4m, length 0.1km and coefficient of friction 0.005. What is the length of an equivalent pipe which has diameter 0.2m and coefficient of friction 0.008? A) 195m B) 19.5m C)1.95m D) 1950m
- 7) The true bearing of a line is 40°30'. Declination is 3°W. The magnetic bearing of line is:
 - C) 36°30' A) 43°30' B) 37°30' D) 44°30'
- 8) Points C and D are 1530m apart across a wide river. The following reciprocal levels are taken with one level.

Level at	Readin	g on
	С	D
C	3.810 m	2.165 m
D	2.355 m	0.910 m

The true difference in elevation between C and D is:

- A)1.645 m

- B) 1.545 m C) 1.745 m D) 1.345 m
- 9) Fore bearing of a line is 540°. Declination is 2°W. True bearing of line is: B) 218° C) S 42°E D) S 38° E

- 10) The dry density of a soil is 1.5 g/cc. If the saturation water content were 50%, then its saturated density and submersed density would respectively be,
 - A)1.5 g/cc and 1.0g/cc
- B)2.0 g/cc and 1.0 g/cc
- C)2.25 g/cc and 0.25 g/cc

D)2.50 g/cc and 1.50 g/cc

11) A clay sampl its shrinkage		of 0.50 in dry s	state and if the spe	ecific gravity of solids is 2.70,
A)12%		C)18.5%	D)22%	
at top and a c clay layer and times the thic ratio of equ	lay layer below. P d one-tenth of the ckness of the sand	ermeability of permeability of I layer and tw I and equiva	the silt layer is 10 of the sand layer. To—third of the thick	ned between a fine—sand layer times the permeability of the Thickness of the silt layer is 2 ckness of the clay layer. The meability of the deposit is
13) Which cemer A) Rapid Har	nt contains high pe	rcentage of C ₃ B) Ordinary	S and less percent	age of C ₂ S? C) Quick Setting
	of concrete is meanratus test B) Sl		linimum void met	hod D) Talbot Richard test
15) The shortest p	oossible time in wl	hich an activity	can be achieved	under ideal circumstances is
	c time estimate	B) Optimisti	c time estimate	C) Expected time estimate

Course Code: CET 308

Comprehensive Course Work

MODULE 1

D) None of these

Concept of stress and strain, Hooke's law, Stress-strain diagram of mild steel; Axially loaded bars. Temperature stress in composite bars, Poisson's ratio, Elastic constants and the relationship between them. Beams, Concept of bending moment and shear force, Shear force and bending moment diagrams of cantilever beams, simply supported beams and overhanging beams for different type of loads. Theory of simple bending; Shear stress in beams. Principal stresses and principal planes in 2D problems, maximum shear stress; Mohr's circle.

MODULE 2

Fluid properties; Fluid statics, measurement of fluid pressure. Buoyancy and Floatation: Buoyant force, Principle of floatation, stability of floating and submerged bodies, metacentre and metacentric height; continuity equation in one, two and three dimensions. Bernoulli's equation and its applications; Pipe flow- computation of major and minor losses in pipes, equivalent pipe.

Open channel flow, velocity distribution in open channels, uniform flow computations, Most economical sections, Specific energy, Critical flow; Hydraulic jump.

MODULE 3

Introduction to Surveying- Principles, Linear, angular and graphical methods. Bearing of survey lines, Local attraction, Declination; Principles of levelling, Methods of levelling. Theodolite surveying, Measurement of horizontal and vertical angle; Triangulation. Traverse Surveying, Checks in closed traverse; Theory of Errors – Types, theory of least squares, Weighting of observations. Total Station – concept of EDM, principles and working. GPS-Components and principles. Remote Sensing.

MODULE 4

Definitions and properties of soil, 3 phase system, Index properties of soil, Soil classification, Effective stress, Quick sand condition, Stress distribution, Permeability of soil, Darcy's law, Factors affecting permeability, Laboratory tests, Consolidation, Normally consolidated, over consolidated and under consolidated soils, Time factor, Coefficient of consolidation, Compaction Tests – OMC and MDD, shear strength of soil, Triaxial compression test, Unconfined compression test, Direct shear test and Vane shear test

MODULE 5

Cement: Manufacturing, chemical composition, Types, Tests, Hydration of cement. Properties of fresh concrete and hardened concrete. Types of stone masonry – composite walls - cavity walls and partition walls - Construction details and features. Finishing works: Plastering, Pointing, Painting – objectives and types. Prefabricated construction – advantages and disadvantages, Prefabricated building components. Causes of failures in RCC and Steel structures. Types of tenders, Types of contracts. Types of Schedules. Network analysis –CPM, PERT – concepts and problems

[HOD, CE]

Dr. LEENA A. V.

PRINTOTPAL

SREE NARANNA GURU COLLEGE OF

ENGINEERING & TECHNOLOGY, PAYYANUR

ENGINEERING & TECHNOLOGY, PAYYANUR

SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF CIVIL ENGINEERING

COURSE PLAN SCHEDULE

Name of the faculty	Ms. REVATHI P
Designation	Assistant Professor
Faculty department name	Civil Engineering
Name of the course with course code	CET 308 Comprehensive Course Work
Department to which this course is offered	Civil Engineering
Semester	VI
Academic Year	2022-23

1. COURSE OVERVIEW

The course is designed to ensure that the student have firmly grasped the foundational knowledge in Civil Engineering familiar enough with the technological concepts. It provides an opportunity for the students to demonstrate their knowledge in various Civil Engineering subjects.

2. COURSE OBJECTIVE

1.To practice more with core subjects for cracking Gate, placement test and other competitive examinations

3. PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

I. PROGRAM OUTCOMES

- ENGINEERING KNOWLEDGE
- PROBLEM ANALYSIS
- DESIGN / DEVELOPMENT OF SOLUTION
- CONDUCT INVESTIGATION OF COMPLEX PROBLEMS
- MODERN TOOL USAGE
- THE ENGINEER AND SOCIETY
- ENVIORNMENT AND SUSTAINABILITY
- ETHICS
- INDIVIDUAL AND TEAM WORK
- COMUNICATION
- PROJECT MANAGEMENT AND FINANCE
- LIFE LONG LEARNING

II. PROGRAM SPECIFIC OUTCOME

- III. **PSO 1** –Demonstrate in-depth knowledge in the analysis, design, experimental research and construction aspects of civil engineering structures
- IV. **PSO 2** –Apply the concept of sustainability in Civil Engineering

4. COURSE OUTCOME

- **CO** 1 Learn to prepare for a competitive examination
- **CO 2**: Comprehend the questions in Civil Engineering field and answer them with confidence
- CO 3 Communicate effectively with faculty in scholarly environments
- CO 4: Analyze the comprehensive knowledge gained in basic courses in the field of Civil Engineering

5. COURSE MAPPING

	PO	PSO	PSO											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
CO1	3	1	1			2							1	1
CO2	3	1				2			3					
CO3	3	1			1	2			3					1
CO4	3	3			1	2								

6. SYLLABUS

CET 201- Mechanics of Solids

CET 203- Fluid Mechanics and Hydraulics

CET 205- Surveying& Geomatics

CET 204- Geotechnical Engineering I

CET 309-Construction Technology and Management

7. TEACHING PLAN

SL No:	TOPIC	No of Lectures
1	Mechanics of Solids	
1.1	Mock Test on Module 1 and Module 2	1
1.2	Mock Test on Module 3, Module 4 and Module 5	1
2	Fluid Mechanics and Hydraulics	1
2.1	Mock Test on Module 1, Module 2 and Module 3	1
2.2	Mock Test on Module 4 and Module 5	1
3	Surveying& Geomatics	1
3.1	Mock Test on Module 1 and Module 2	1
3.2	Mock Test on Module 3, Module 4 and Module 5	1
3.3	Feedback and Remedial	1
4	Geotechnical Engineering I	1
4.1	Mock Test on Module 1, Module 2 and Module 3	1
4.2	Mock Test on Module 4 and Module 5	1
5	Construction Technology and Management	1
5.1	Mock Test on Module 1, Module 2 and Module 3	1
5.2	Mock Test on Module 4 and Module 5	1
6	Construction Technology and Management	1
6.1	Mock Test on Module 1, Module 2 and Module 3	1
6.2	Mock Test on Module 4 and Module 5	1
6.3	Feedback and Remedial	1

8. Subject History

- ✓ Year of Introduction of the Subject 2022
- ✓ Faculty Handled Just before this time Da. Susan Abraham
- ✓ Pass Percentage during last three years 66.67/
- ✓ Target Pass Percentage 85
- ✓ The following is the formula for calculating the target percentage of a subject.
- 9. Any other important matter to be brought into consideration:

Manual Prepared by:

Ms. REVATHI P

ASSISTANT PROFESSOR

DEPARTMENT OF CE

Approved by:

Dr. susan Abraham Associate professor Department of ce

Dated signature of faculty member

Cald 103.

Dated signature of Module Coordinator

Dated signature of HOD

SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF CIVIL ENGINEERING STUDENTS LIST S6 CE

SL.NO	REGISTER NUMBER	NAME OF STUDENT
1	SNC20CE001	АВНІЈІТНА К
2	SNC20CE002	AKSHAYA PV
3	SNC20CE003	ALEN ALEX
4	SNC20CE004	AMAYA T
5	SNC20CE006	ANUVINDA P
6	SNC20CE007	APARNA P
7	SNC20CE008	ARJUN KM
8	SNC20CE009	FATHIMATHUL MARJAN KP
9	SNC20CE010	FATHIMATH ZUHRA
10	SNC20CE011	FIZA FARHEEN
11	SNC20CE012	KEERTHANA SURENDRAN
12	SNC20CE013	MOOHAMMED EBRAHIM
13	SNC20CE014	RAJATH MANOHARAN
14	SNC20CE015	SAJJAD ZAINUDHEEN
15	SNC20CE016	SHAHANA SHERIN
16	SNC20CE017	SREELAKSHMI K
17	SNC20CE018	SREEVISHNU K
18	SNC20CE019	VAISHNAVI N K
19	SNC20CE020	VYSHNA K
20	LSNC20CE021	ANUPRIYA K

SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF CIVIL ENGINEERING

CET308-COMPREHENSIVE COURSE WORK

CUMULATIVE ATTENDENCE

CI NO	DEGNO	COMOLATIVE ATTE	ATTENDENCE	ATTENDENCE
SL NO.	REG NO	NAME	(%)	(MARKS)
1	SNC20CE001	АВНІЈІТНА К	95.8	10
2	SNC20CE002	AKSHAYA PV	95.8	10
3	SNC20CE003	ALEN ALEX	91.7	10
4	SNC20CE004	AMAYA T	91.7	10
5	SNC20CE006	ANUVINDA P	91.7	10
6	SNC20CE007	APARNA P	91.7	10
7	SNC20CE008	ARJUN KM	75.0	7
8	SNC20CE009	FATHIMATHUL MARJAN KP	83.3	8
9	SNC20CE010	FATHIMATH ZUHRA	83.3	8
10	SNC20CE011	FIZA FARHEEN	75.0	7
11	SNC20CE012	KEERTHANA SURENDRAN	75.0	7
12	SNC20CE013	MOOHAMMED EBRAHIM	75.0	8
13	SNC20CE014	RAJATH MANOHARAN	95.8	10
13	SNC20CE015	SAJJAD ZAINUDHEEN	83.3	8
15	SNC20CE016	SHAHANA SHERIN	83.3	8
16	SNC20CE017	SREELAKSHMI K	95.8	10
17	SNC20CE018	SREEVISHNU K	95.8	10
18	SNC20CE019	VAISHNAVI N K	87.5	10
19	SNC20CE020	VYSHNA K	91.7	10
20	LSNC20CE021	ANUPRIYA K	91.7	10

[HOD, CE]

Dr. LEENA A. V.

PERITOTPAL

SHEEN TAYONA BUY COLLEGE OF

ENGINEERING & TO SOLOGY, PAYYANUR

KALLINUR

	A	
Name:	Aparn	9

D.II M.	NT.	OI							
Koli No	-								

SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY

Internal Test	1	Academic Year/Semester	2022-23 / S6
Subject name with code	CET308 CCW	Branch	CG
Date of Exam	15/2/23	Duration	tha
Starting time	1 PM	Max. Marks	45

1. Which of the following statements regarding	the cube strength of concrete are correct?
--	--

- (i) Strength increases with decrease in cube size
- (ii) Strength decreases with increase in slenderness ratio Time: 60 min. (iii) Strength increases with increase in slenderness ratio
- (iv) Strength decreases with decreases in cube size
- (A) (i) and (ii) are correct
- (B) (i), (ii), (iii) are correct
- (C) (i) and (iii) are correct
- (D) All the above
- 2. Which of the following statements regarding properties of concrete are correct?
- (p) Modulus of elasticity of M25 grade of concrete is 25000 MPa.
- (q) Approximate value of shrinkage strain of concrete is 0.0003
- (r) pH value of water used in concrete construction should not be less than 6.
- (A) p and q are correct

(B) p and r are correct (C) q and r are

correct

- (D) all the above are correct
- 3. The long term modulus of elasticity of M25 grade concrete with q value at 7 days to be 2.2

is

(A) 25000 MPa

(B) 7812.5 MPa

(C)	3500	MPa

(D) None

- 4. Consider the following statements regarding the air entrained concrete? (1) Increased resistance to freezing and thawing
- (2) Improvement in workability.
- (3) Increase in strength.
- (4) Permits reduction in water content of these,
- (A) 1, 2, 4 are correct

(B) 2, 3, 4 are correct

(C) 1, 3, 4 are correct

(D) All the above are correct

- 5. Which of the following statements regarding admixtures are correct? (A) Retards the setting of cement (B) Accelerates the setting of cement (C) Improves the workability of concrete (D) All the above
- 6. Consider the following statements:
- I. The compressive strength of concrete decreases with increase in water cement ratio of the concrete mix.
- II. Water is added to the concrete mix for hydration of cement and workability.
- III. Creep and shrinkage of concrete are independent of the water cement ratio in the concrete mix.

The true statements are

(A) I and III

(B) I, II, III

(C) II and III

(D) I and II

- 7. Consider the following statements:
- I. Modulus of elasticity of concrete increases with increase in compressive strength of concrete
- II. Brittleness of concrete increases with decrease in compressive strength of concrete
- III. Shear strength of concrete increases with increase in compressive strength of concrete.

The true statements are
(A) I and III (B) I, II, III
(C) II and III (D) I and II
8. Consider the following statements:
(p) Nominal mix proportions for M20 grade concrete is 1:1.5:3
(q) Weight batching is preferred compared to nominal (volume) batching
(r) Maximum cement content as per IS456-2000 is 450 kg/m3
(A) p, q are correct (B) p, r are correct
(C) q, r are correct (D) p, q and r are correct
9. Which of the following statements given below are correct.
(p) Nominal cover to reinforcement is based on serviceability or durability requirements
(q) Factors affecting the durability of concrete are w/c and maximum cement content
(r) Minimum cement content is not based on exposure conditions.
(A) p, q, r are correct (B) p and q are correct
(C) p and r are correct (D) only p is correct
10. Consider the following statements regarding the addition of pozzolanas to cement cause
(p) Increase in strength (q) Less heat of hydration (r) Decrease in workability
The true statements are
(A) p, q, r are correct (C) p and r are correct
(B) p and q are correct (D) q only is correct

Water: 180 kg/m3

Ordinary Portland cement: 360 kg/m3

Sand: 601 kg/m3 Coarse aggregate: 1160 kg/m3

11. The composition of air entrained concrete is given below:

Assume the specific gravity of OPC, sand and coarse aggregate to be 3.10, 2.65 and 2.74
respectively, the air content in liters/m3 is
(A) 53 liters/m3
(B) 50 liters/m3
(C) 45 liters/m3
(D) None
12. Consider the following statements
(p) Nominal maximum size of coarse aggregate to be used in R.C.C is 20 mm
(q) As per IS456-2000; fine sand to be used in R.C.C should confirm to zone II and medium
sand.
(r) Minimum grade of concrete to be used in R.C.C is M30 The true statements are
(A) p and q are true (B) p and r are true
(C) p, q and r are true (D) q and r are true
13. Which of the following statements given below are correct?
(p) In mild environment, surface crack width should not exceed 0.3 mm as per IS456-2000.
(q) Crack width increases with increase in stress in reinforcement bar.
(r) Concrete and steel exhibit high strength after being subjected to high temperature.
(A) p and r are correct (B) p, q and r are correct
(C) p and q are correct (D) None
14. The ratio of the volume of air voids to the volume of voids, is called
A. void ratio B. air content
C. degree of saturation D. Porosity
15. The specific gravity of sandy soils is
SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY, PAYYANUR KANNUR

<u>A.</u>	1.2	<u>B.</u>	1.8
<u>C.</u>	2.2	<u>D.</u>	2.7
16.Acc	cording to Indian standards, the dispersing	solutio	on used in pipette method, for the
determ	ination of size of particle consists of		
	7 g sodium carbonate, 43 g sodium		7 g sodium carbonate, 33 g sodium
<u>A.</u>	hexameta-phosphate and 1 litre	<u>B.</u>	hexameta-phosphate and 1 litre
	distilled water		distilled water
	7 g sodium carbonate, 23 g sodium		
<u>C.</u>	hexameta-phosphate and 1 litre	<u>D.</u>	any one of the above
	distilled water		
17.The	water content in a soil at which just shear	streng	th develops is called
<u>A.</u>	liquid limit	<u>B.</u>	plastic limit
<u>C.</u>	elastic limit	<u>D.</u>	shrinkage limit
18.Wh	ich of the following gives the correct decr	easing	order of the densities of a soil sample?

19. The ratio of the unconfined compressive strength of undisturbed soil to the unconfined compressive strength of soil in a remoulded state, is called

<u>B.</u>

<u>D.</u>

Saturated, submerged, wet, dry

Saturated, wet, dry, submerged

<u>C.</u>

SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY, PAYYANUR KANNUR

Saturated, wet, submerged, dry

Wet, saturated, submerged, dry

A. sensitivity thixotropy <u>C.</u> relative density bulk density D. 20.A body floating in a liquid is said to be in neutral equilibrium, if its metacentre coincides with its centre of gravity **A.** lies above its centre of gravity В. lies between the centre of buoyancy <u>C.</u> lies below its centre of gravity and centre of gravity 21.A flow through an expanding tube at constant rate is called steady uniform flow steady non-uniform flow unsteady uniform flow unsteady non-uniform flow D. 22. The total energy of a liquid particle in motion is equal to pressure energy + kinetic energy + pressure energy - (kinetic energy + <u>B.</u> potential energy potential energy) potential energy - (pressure energy + kinetic energy - (pressure energy + <u>C.</u> <u>D.</u> kinetic energy) potential energy) 23. The discharge over a rectangular notch is inversely proportional to H3/2 <u>B.</u> directly proportional to H3/2 <u>A.</u> inversely proportional to H5/2 D. directly proportional to H5/2

		,	
<u>A.</u>	real fluid	<u>B.</u>	ideal fluid
<u>C.</u>	newtonian fluid	<u>D.</u>	non-newtonian fluid
29.Wł	nenever some external system of forces ac	cts on a	body, it undergoes some deformation. As
the bo	dy undergoes some deformation, it sets u	p some	resistance to the deformation. This
resista	ance per unit area to deformation, is called	d	
<u>A.</u>	strain	<u>B.</u>	stress
<u>C.</u>	pressure	<u>D.</u>	modulus of elasticity
30.A t	beam extending beyond the supports is ca	lled	
	Min. Br.		
<u>A.</u>	simply supported beam	<u>B.</u>	fixed beam
<u>C.</u>	overhanging beam	<u>D.</u>	cantilever beam
31.A c	concentrated load is one which		
	aliay add		spreads non-uniformly over the whole
A.	acts at a point on a beam	<u>B.</u>	length of a beam
<u>C.</u>	spreads uniformly over the whole length of a beam	<u>D.</u>	varies uniformly over the whole length of a beam
32.Th	e section nodulus (Z) of a beam is given b	ру	New _

24. The sheet of water flowing over a notch or a weir is known as			
<u>A.</u>	sill or crest	<u>B.</u>	nappe or vein
<u>C.</u>	orifice	<u>D.</u>	none of these
25.The	total energy line lies over the hydraulic gr	radient	line by an amount equal to the
<u>A.</u>	pressure head	<u>B.</u>	velocity head
<u>c.</u>	pressure head + velocity head	<u>D.</u>	pressure head - velocity head
26.Sele	ect the wrong statement		
<u>A.</u>	An equivalent pipe is treated as an ordinary pipe for all calculations	<u>B.</u>	The length of an equivalent pipe is equal to that of a compound pipe
<u>C.</u>	The discharge through an equivalent pipe is equal to that of a compound pipe	<u>D.</u>	The diameter of an equivalent pipe is equal to that of a compound pipe
27.Wh	en a cylindrical vessel, containing some lie	quiđ, is	rotated about its vertical axis, the liquid
surface	is depressed down at the axis of its rotation	on and	rises up near the walls of the vessel on all
sides.	This type of flow is known as		
<u>A.</u>	steady flow	<u>B.</u>	turbulent flow
<u>C.</u>	vortex flow	<u>D.</u>	uniform flow
28.flu	id whose viscosity does not change with the	ne rate	of deformation or shear straints known Dr. LEENA A. V. PRINCIPAL SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY, PAYYANUR KANNUR

A	I/y	<u>B.</u>	I.y
<u>C.</u>	y/I	<u>D.</u>	M/I
33. be	am of T-section is subjected to a shear for	ce of F.	The maximum shear force will occur at
the			
<u>A.</u>	top of the section	<u>B.</u>	bottom of the section
<u>C.</u>	neutral axis of the section	<u>D.</u>	junction of web and flange
34.A r	rectangular beam of length I supported at i	ts two e	ends carries a central point load W. The
maxin	num deflection occurs		
<u>A.</u>	at the ends	<u>B</u> .	at 1/3 from both ends
<u>C.</u>	at the centre	<u>D.</u>	none of these
35.Th	e load required to produce a unit deflectio	n in a s	pring is called
<u>A.</u>	flexural rigidity	<u>B.</u>	torsional rigidity
<u>C.</u>	spring stiffness	<u>D</u> .	Young's modulus
36. Th	ne Rankine's theory for active earth pressu	re is ba	sed on the assumption that
<u>A.</u>	the retained material is homogeneous and cohesionless	<u>B.</u>	the frictional resistance between the retaining wall and the retained

material is neglected

	the failure of the retained material	/	
<u>C.</u>	takes place along a plane called	<u>p.</u>	all of the above
	rupture plane		
37. If I	percentage reduction in area of a certain spe-	cime	n made of material 'A' under tensile test is
60% a	nd the percentage reduction in area of a spec	cimer	with same dimensions made of material
'B' is 4	0%, then		
	the material A is more ductile than	.	the material B is more ductile than
<u>A.</u>	material B	<u>B.</u>	material A
	the ductility of material A and B is		the material A is brittle and material B
<u>C.</u>	equal	<u>D.</u>	is ductile
38. Fa	ctor of safety is defined as the ratio of		
A .	ultimate stress to working stress	<u>B.</u>	working stress to ultimate stress
<u>C.</u>	breaking stress to ultimate stress	<u>D.</u>	ultimate stress to breaking stress
39. Th	e failure of foundation of a building is due t	0	
<u>A.</u>	withdrawl of subsoil moisture	<u>B.</u>	unequal settlement of soil
	lateral escape of the supporting	_/	11 64
<u>C.</u>	material	<u>D.</u>	all of these
	- well		Dr. LEENA A. V. PRINCIPAL SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY, PAYYANUR KANNUR

<u>A.</u>	increasing the depth of footing	<u>B.</u>	draining the sub-soil water
<u>C.</u>	ramming the granular material like crushed stone in the soil	<u>D.</u>	all of the above
41. br	ick masonry, for good bonding		
<u>A.</u>	all bricks need not be uniform in size	<u>B.</u>	bats must be used in alternate courses only
<u>C.</u>	vertical joints in alternate courses should fall in plumb	<u>D.</u>	cement mortar, used must have surkhi as additive
42. Th	e size of a step commonly adopted for re	sidentia	l buildings is
<u>A.</u>	250 mm x 160 mm	<u>B.</u>	270 mm x 150 mm
<u>C.</u>	300 mm x 130 mm	<u>D.</u>	350 mm x 100 mm
43.A v	weir, generally, used as a spillway of a da	m is	
<u>A.</u>	narrow crested weir	<u>B.</u>	broad crested weir
<u>C.</u>	Ogee weir	<u>D.</u>	submerged weir
44.Th	e hydraulic mean depth for a circular pipe	of dian	neter (d) is

40. The bearing capacity of soils can be improved by

A. d/6

 \mathbf{B} . d/4

<u>C</u>. d/2

<u>**D.**</u> d

45. The coefficient of venturiflume, generally lies between

A. 0.3 to 0.45

B. 0.50 to 0.75

C. 0.75 to 0.95

D. 0.95 to 1.0

Name: Abhyisha. K

Roll No:- ...

SREE NARAYANA GURU COLLEGE OF ENGINEERING **ECHNOLOGY**

Internal Test	2	Academic Year/Semester	2022-23 / S6
Subject name with code	CET308 CCW	Branch	CE
Date of Exam	29103123	Duration	Tha
Starting time	9:00 am	Max. Marks	20

Chemical weathering of soil is caused	cause	caus	cau	15 (1 1:	SOII	OT	weathering	al	Cnemical
---------------------------------------	-------	------	-----	------	------	------	----	------------	----	----------

B. hydration

C. carbonation and leaching

W. all of these

The property of a soil which is of great importance in finding settlement of structures, is

, A permeability

B. sher strength

C. consolidation

D. compressibility

The ratio of the volume of air voids to the volume of voids, is called

A. void ratio

B. air content

C. degree of saturation

D. Porosity

The ratio of the unit weight of soil solids to that of water is called

A. void ratio

B. porosity

c. specific gravity

D. degree of saturation

soil sample is having a specific gravity of 2.60 and a void ratio of 0.78.	The water	content ir
percentage required to fully saturate the soil at that void ratio will be		

A. 10

B. 30

C. 50

D. 70

The specific gravity of sandy soils is

A. 1.2

B. 1.8

C. 2.2

D. 2.7

According to Indian standards, the dispersing solution used in pipette method, for the determination of size of particle consists of

- 7 g sodium carbonate, 43 g sodium
- A. hexameta-phosphate and 1 litre distilled water
- 7 g sodium carbonate, 33 g sodium hexameta-phosphate and 1 litre distilled water
- 7 g sodium carbonate, 23 g sodium
- C. hexameta-phosphate and 1 litre distilled water
- D. any one of the above

When the hydrometer analysis is performed, it requires correction for

A. temperature only

meniscus only

C. dispersing agent only

D. all of these

If the volume of voids is equal to the volume of soil solids, then the values of porosity and void ratio are respectively

A. 0 and 0.5

B. 0 and 1

C. 0.5 and 1

D. 1 and 0.5

A soil having uniformity co-efficient more than 10, is called

A. uniform soil

B. poor soil

According to Indian standards, in a 2 mm sieve

A. there are two holes

- B. each sieve is circular and its diameter is 2 mm
- each hole is a square and its side is 2 mm
- D. there are two holes per cm length of the mesh

The water content in a soil at which just shear strength develops is called

A. liquid limit

B. plastic limit

C elastic limit

D. shrinkage limit

The ratio of the unconfined compressive strength of undisturbed soil to the unconfined compressive strength of soil in a remoulded state, is called

sensitivity

B. thixotropy

C. relative density

D. bulk density

The liquid limit minus plastic limit is termed as

A. flow index

B. plasticity index

C. shrinkage index

D. liquidity index

The water content of soils can be accurately determined by

A. sand bath method

B. calcium carbide method

c. over drying method

D. Pycnometer method

Which of the following gives the correct decreasing order of the densities of a soil sample?

- A. Saturated, submerged, wet, dry
- B. Saturated, wet, submerged, dry

C. Saturated, wet, dry, submerged

Wet, saturated, submerged, dry

For a given soil mass, the void ratio is 0.60, water content is 18% and specific gravity of the soil particles is 2.6. The degree of saturation of the soil is

30%

B. 50%

c. 78%

D. 82.50%

The relation between the air content (ac) and the degree of saturation (s) is

A.
$$ac = s$$

D.
$$ac = 1/s$$

The minimum size of grains of silts is about

0.002 mm

Chemical weathering of soil is caused due to

A. oxidation

B. hydration

- C. carbonation and leaching
- D. all of these

APJ Abdul Kalam Technological University CET Campus, Thiruvananthapuram Kerala -695016 India

SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY

Students Examination Eligibility Details

Academic Year : 2022 - 2023

Degree Type: Regular

Program:

Branch: CIVIL ENGINEERING

Semester: S6

B.Tech(Full Time)

Course Name: COMPREHENSIVE COURSE

Batch: 1

WORK-CET308

Eligibility For: Pursuing Students

Period of Registration: NA

Student Name	Attendance %, Internal Marks	Availed Leaves	Disc. Action	Eligible for Written Exam	Status:	In- eligibility Type
ABHIJITHA K Register No : SNC20CE001	Attendance : 96.0 Internal Marks :	Long Leave : Duty Leave :		Yes	Submitted by faculty	
AKSHAYA PV Register No : SNC20CE002	Attendance : 96.0 Internal Marks :	Long Leave : Duty Leave :		Yes	Submitted by faculty	
ALEN ALEX Register No : SNC20CE003	Attendance : 92.0 Internal Marks :	Long Leave : Duty Leave :		Yes	Submitted by faculty	
AMAYA T Register No : SNC20CE004	Attendance : 92.0 Internal Marks :	Long Leave : Duty Leave :	./.	Yes	Submitted by faculty	

			 viv		-
ANUVINDA P Register No : SNC20CE006	Attendance : 92.0 Internal Marks :	Long Leave : Duty Leave :	Yes	Submitted by faculty	
APARNA P Register No : SNC20CE007	Attendance : 92.0 Internal Marks :	Long Leave : Duty Leave :	Yes	Submitted by faculty	
ARJUN KM Register No : SNC20CE008	Attendance : 75.0 Internal Marks :	Long Leave : Duty Leave :	Yes	Submitted by faculty	
FATHIMATHUL MARJAN KP Register No : SNC20CE009	Attendance : 83.0 Internal Marks :	Long Leave : Duty Leave :	Yes	Submitted by faculty	
FATHIMATH ZUHRA Register No : SNC20CE010	Attendance : 83.0 Internal Marks :	Long Leave : Duty Leave :	Yes	Submitted by faculty	
FIZA FARHEEN Register No : SNC20CE011	Attendance : 75.0 Internal Marks :	Long Leave : Duty Leave :	Yes	Submitted by faculty	
KEERTHANA SURENDRAN Register No : SNC20CE012	Attendance : 75.0 Internal Marks :	Long Leave : Duty Leave :	Yes	Submitted by faculty	
MOOHAMMED EBRAHIM Register No : SNC20CE013	Attendance : 75.0 Internal Marks :	Long Leave : Duty Leave :	Yes	Submitted by faculty	
RAJATH MANOHARAN Register No : SNC20CE014	Attendance : 96.0 Internal Marks :	Long Leave : Duty Leave :	Yes	Submitted by faculty	
SAJJAD ZAINUDHEEN Register No : SNC20CE015	Attendance : 83.0 Internal Marks :	Long Leave : Duty Leave :	Yes	Submitted by faculty	

SHAHANA SHERIN Register No : SNC20CE016	Attendance : 83.0 Internal Marks :	Long Leave : Duty Leave :	Yes	Submitted by faculty	
SREELAKSHMI K Register No : SNC20CE017	Attendance : 96.0 Internal Marks :	Long Leave : Duty Leave :	Yes	Submitted by faculty	
SREEVISHNU K Register No : SNC20CE018	Attendance : 96.0 Internal Marks :	Long Leave : Duty Leave :	Yes	Submitted by faculty	
VAISHNAVI N K Register No : SNC20CE019	Attendance : 88.0 Internal Marks :	Long Leave : Duty Leave :	Yes	Submitted by faculty	
VYSHNA K Register No : SNC20CE020	Attendance : 92.0 Internal Marks :	Long Leave : Duty Leave :	Yes	Submitted by faculty	
ANUPRIYA K Register No : LSNC20CE021	Attendance : 92.0 Internal Marks :	Long Leave : Duty Leave :	Yes	Submitted by faculty	