Course code Course Name		L-T-P - Credits	Year of						
			Introduction						
**352	Comprehensive Examination	0-1-1-2	2016						
	Prerequisite : Nil								
Course Object	tives								
 To asse 	ss the comprehensive knowledge gained in	n basic courses relevant	to the branch of						
study	study								
• To com	• To comprehend the questions asked and answer them with confidence.								
Assessment	Assessment								

Oral examination – To be conducted by the college (@ three students/hour) covering all the courses up to and including V semester– 50 marks

Written examination - To be conducted by the Dept. on the date announced by the University– common to all students of the same branch – objective type (1 hour duration)– 50 multiple choice questions (4 choices) of 1 mark each covering the six common courses of S1&S2 and six branch specific courses listed – questions are set by the University - no negative marks – 50 marks.

Note: Both oral and written examinations are mandatory. But separate minimum marks is not insisted for pass. If a students does not complete any of the two assessments, grade I shall be awarded and the final grade shall be given only after the completion of both the assessments. The two hours allotted for the course may be used by the students for discussion, practice and for oral assessment.

Expected outcome.

• The students will be confident in discussing the fundamental aspects of any engineering problem/situation and give answers in dealing with them

LIST OF STUDENTS ATTENDED COMPREHENSIVE WORK (2019-20)

B-TECH IN CIVIL ENGINEERING							
SL NO:	REGISTER NO.	NAME					
1.	SNC17CE001	ABDUL MUSAVVIR KASIM					
2.	SNC17CE004	AISHWARYA PRAKASH					
3.	SNC17CE005	AISWARYA P P					
4.	SNC17CE006	AJEEBA					
5.	SNC17CE008	AKSHATHA KRISHNAN					
6.	SNC17CE010	AMEGH P					
7.	SNC17CE011	AMITHA SASIDHARAN					
8.	SNC17CE013	ANAGHA P					
9.	SNC17CE014	ANAGHA SREEVALSAN U.M					
10.	SNC17CE015	ANAGHA T					
11.	SNC17CE016	ANJALI K					
12.	SNC17CE018	ANULAKSHMI P V					
13.	SNC17CE019	APARNA B PREM					
14.	SNC17CE020	APSARA E K					
15.	SNC17CE024	GOKUL AMBILOTH					
16.	SNC17CE026	HARITHA CV					
17.	SNC17CE027	HRISHIKA M					
18.	SNC17CE028	IRINGAKARAN RHISHI SASIDHARAN					
19.	SNC17CE029	KEERTHI RAJAN					
20.	SNC17CE031	MAHDIYA KV					
21.	SNC17CE032	MALAVIKA JAYAKUMAR					

Dr. LEENA A V PRINCIPAL SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY PAYYANUR, KANNUR

22.	SNC17CE033	MANEESHA K V				
23.	SNC17CE035	MUHAMMED WASEEM ALI				
24.	SNC17CE036	MUHSIN MUTTOON				
25.	SNC17CE037	RAHID PV				
26.	SNC17CE038	SAFEERA K				
27.	SNC17CE039	SAYOOJYA SADANANDAN P				
28.	SNC17CE041	SIDHIN K				
29.	SNC17CE042	SNEHA P.V				
30.	SNC17CE043	SREERAG E N				
31.	SNC17CE044	SREERAG M				
32.	SNC17EC005	ΓΑΤΗΙΜΑ Κ Κ				
33.	SNC16CE010	ARJUN MV				
34.	SNC16CE024	NASHATH JALEEL				
35.	SNC16CE026	NEERAJA S				

Leve

Dr. LEENA A V PRINCIPAL SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY PAYYANUR, KANNUR

B-TECH IN COMPUTER SCIENCE AND ENGINEERING

1.	SNC17CS004	ADISH KUMAR
2.	SNC17CS005	AJAY V
3.	SNC17CS006	ALBIN SABU
4.	SNC17CS007	AMALDAS M V
5.	SNC17CS008	AMANA ASHRAF
6.	SNC17CS009	ANASWARA KRISHNAN
7.	SNC17CS010	ANIMA M
8.	SNC17CS012	ANKETH LOVEJITH
9.	SNC17CS013	ANUJA N.V
10.	SNC17CS014	ATHIRA. V.V
11.	SNC17CS015	ATHIRA MURALIDHARAN K V
12.	SNC17CS016	ATHUL NARAYANAN
13.	SNC17CS017	AVANTHIKA P
14.	SNC17CS018	DEVIKA K K
15.	SNC17CS020	FATHIMA NIFRU C H
16.	SNC17CS022	HEERA MOHAN K V
17.	SNC17CS024	LUBNA MUBASHIR MUBASHIR AHMED
18.	SNC17CS026	NABEEL ABDUL NASAR MUSTAFA
19.	SNC17CS027	NAVEEN KP
20.	SNC17CS028	NEERAJ T M
21.	SNC17CS029	NIMISHA RAJEEV P
22.	SNC17CS030	NIVED RAJAN
23.	SNC17CS032	NIVEDYA P
24.	SNC17CS034	PRANAVPV
25.	SNC17CS035	RAHUL H

DELECIANV

SREE NARAHO ENGINEERING & COUNTOLOUY PAYYANUR, KANNUR

26.	SNC17CS036	SAJINA T.V				
27.	SNC17CS037	SANGEETH A V				
28.	SNC17CS038	SAURAV RITHIN P M				
29.	SNC17CS039	VAISHNAV M M				
30.	SNC17CS040	VYDURYA PRAKASH				
31.	SNC17CS041	VYSHNAV RAJENDRAN				
32.	SNC16CS006	AISWARYA BHASKARAN				
33.	SNC16CS045	VIVEK MM				

t

w

Dr. LEENA A V PRINCIPAL SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY PAYYANUR, KANNUR

B-TEC	H IN ELECTRONICS A	ND COMMUNICATION ENGINEERI
1.	SNC17EC001	ANJANA P M
2.	SNC17EC002	ASHNA SHIBURAJ
3.	SNC17EC003	ASHWIN K RAJ
4.	SNC17EC004	ASWATHI M V
5.	SNC17EC005	FATHIMA K K
6.	SNC17EC006	GOPIKA RAJ NAMBIAR
7.	SNC17EC007	MOHAMMED SHAZ
8.	SNC17EC009	SAYOOJ K
9.	SNC17EC010	SHREYALAKSHMI M
10.	SNC17EC011	SREEROOP PRASAD
11.	SNC17EC013	T P MALAVIKA SAJEEV
12.	SNC17EC014	VISMAYA MANOHARAN
13.	LSNC17EC015	ARYA A
14.	LSNC17EC016	KARTHIKA T
15.	SGT17EC005	RASHMITHA K

de-

Dr. LEENA A V PRINCIPAL SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY PAYYANUR, KANNUR

B-TECH IN ELECTRICAL AND ELECTRONICS ENGINEERING

1.	SNC16EE004	LAJEESH KUMAR K P
2.	SNC17EE001	ANUSREE PRAKASH
3.	SNC17EE002	GAGANA V
4.	SNC17EE003	GREESHMA P
5.	SNC17EE004	MANASA K
6.	SNC17EE006	MUHAMMAD NABEEL
7.	SNC17EE007	VAISHAKH M.M
8.	SNC17EE008	VIVEK VALSAN
9.	SNC17EE009	YADUKRISHNAN V V

w

Dr. LEENA A V PRINCIPAL SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY PAYYANUR, KANNUR

Abheram S Sc

SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING

MOCK TEST 1

- 1. What is fluid mechanics?
- a) Study of fluid behaviour at rest
- b) Study of fluid behaviour in motion
- Study of fluid behaviour at rest and in motion
- d) Study of fluid behaviour at rest and in motion

- 2. Which of the following is the basic principle of fluid mechanics?
- a) Momentum principle
- b) Energy equation
- c) Continuity equation
- d All of the mentioned

3. Stress strain curve for cemented tungsten carbide is:

- a) Hyperbola
- b) Parabola
- c) A curve
- A) Straight line

4, Which of the following relation is stated by Hooke's law?

(a) Stress is directly proportional to strain

- b) Stress is inversely proportional to strain
- c) Stress is directly proportional to square of strain
- d) Stress is inversely proportional to square of strain

5. Which of the following is an application of thermodynamics?

- a) Refrigerators
- b) Gas compressors
- c) Power plants
- d) All of the mentioned
- 6. Which of the following is a type of thermodynamic system?
- a) Open system
- b) Closed system
- c) Thermally isolated system
- d) All of the mentioned

7./Which of the following occurs without a change in the internal energy?

- a) Isochoric process
 - b) Isenthalpic process

Dr. LEENA A. V. PRINCIPAL SREE NARAYANA GURU COLLEGE OF -NGINEERING & TECHNOLOGY, PAYYANG KANNUR c) Steady-state process

d) Isenthalpic process

8. Which of the following properties must a material possess to be used in mold making?

a) High refractoriness

b) Chemical and thermal stability

c) High permeability

All of the mentioned

9. Which of the following group of material type is used in mold making?

a) Metallic only

b) Non-Metallic only

Both metallic as well as non-metallic

d) Neither metallic nor non-metallic

10. How many types of nucleation process are there and what are they?

a) \mathcal{Z} and (fusion and fission)

(Heterogeneous and Homogeneous)

c) 2 and (Heterogeneous and fusion)

d) 4 and (fusion, fission, Heterogeneous and Homogeneous)

View Answer

11. What reactions come under supercooling?

a) Peritectic

b) Eutectic and Peritectic

Eutectic and Eutectoid

d) Peritectic and Eutectoid

12/Which is the most important thermodynamic parameter in Homogenous nucleation?

(A) Free energy G

b) Enthalpy H

c) Entropy S

d) Free energy G, Enthalpy H, Entropy S

View Answer

13. What does phase transformation involve?

a) Transformation rates kinetics

b) Movement/rearrangement of atoms

c) Changes in microstructure

dy Transformation rate kinetics, rearrangement of Atoms, Changes in microstructure

14. What is the full form of ASTM?

a) American society for testing and materials

b) African society for testing and materials

c) American society for torque and momentum forces

d) American society for tensile motion forces

15. Which of the following is not the structural characteristic of a polycrystalline specimen?

b) Average size

PRINCIPAL SREE NARAYANA GURU COLLEGE OF INGINEERING & TECHNOLOGY, PAYYANI KANNUR c) Reactivity

d) Diameter

16. Which of the following refers to the term C.O.P. of refrigeration?

a) Cooling for Performance

(b) Coefficient of Performance

c) Capacity of Performance

d) Co-efficient of Plant

17. Why sustainable manufacturing is required?

a) proper maintenance

b) reuse

c) conserving resources

d) all of the mentioned

18 Which of the following is a thermodynamics law?

a) Zeroth law of thermodynamics

b) Faraday's Law of thermodynamics

.c) Ideal Gas Law of thermodynamics

d) Boyle's Law of thermodynamics

19. Which of the following systems produce a vibration in the foundation?

(a) Unbalanced machine

b) Balanced machine

c) Coupled machine

d) Uncoupled machine

20. Which of the following is a type of fluid based on viscosity?

a) Real Fluid

b) Ideal Fluid

c) Newtonian Fluid

d) All of the mentioned

21. The viscous force the relative motion between the adjacent layers of a fluid in motion. Which of the following flowing fits best in the sentence?

a) never affects

b) may effect under certain conditions

c) facilitates

d) opposes

View Answer

22. Pressure intensity or force due to pressure gradient for fluid at rest is considered as which of the following kind of force?

a) Body force

b) Førce due to motion

c) Surface force

d) None of the mentioned

Dr. LEENA A. V. PRINCIPAL SREE NARAYANA GURU COLLEGE C -NGINEERING & TECHNOLOGY, PAYYANI KANNUR 23. The enthalpy and internal energy are the function of temperature for

a) all gases

b) steam

c) water

d) ideal gas

24. In which of the following systems does mass transfer occur across the system boundary?

a) isolated system

b) closed system

open system

d) none of the mentioned

25. When more than one fluid stream enters or leaves the control volume, which of the following type of balance is taken?

a) mass balance

b) energy balance

c) mass balance and energy balance

d) none of the mentioned

Dr. LEENA A. V PRINCIPAL SREE NARAYANA GURU COLLEGE O -NGINEERING & TECHNOLOGY, PAYVAN KANNUR

Granesh K-V Sh

SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING

MOCK TEST 1

1. What is fluid mechanics?

- a) Study of fluid behaviour at rest
- b) Study of fluid behaviour in motion

C) Study of fluid behaviour at rest and in motion

d) Study of fluid behaviour at rest and in motion

2. Which of the following is the basic principle of fluid mechanics?

- a) Momentum principle
- b) Energy equation
- c) Continuity equation
- All of the mentioned

3. Stress strain curve for cemented tungsten carbide is:

- a) Hyperbola
- b) Parabola
- A curve
- d) Straight line

4. Which of the following relation is stated by Hooke's law?

A) Stress is directly proportional to strain

- b) Stress is inversely proportional to strain
- c) Stress is directly proportional to square of strain
- d) Stress is inversely proportional to square of strain

5. Which of the following is an application of thermodynamics?

- a) Refrigerators
- b) Gas compressors
- c) Power plants
- d) All of the mentioned

6. Which of the following is a type of thermodynamic system?

- a) Open system
- b) Closed system
- c) Thermally isolated system
- d) All of the mentioned

7. Which of the following occurs without a change in the internal energy?

- (a) Isochoric process
- b) Isenthalpic process

Dr. LEENA A. V. PRINCIPAL SREE NARAYANA GURU COLLEGE O NGINEERING & TECHNOLOGY, PAYYAN KANNUR

c) Steady-state process

d) Isenthalpic process

8. Which of the following properties must a material possess to be used in mold making?

a) High refractoriness

b) Chemical and thermal stability

(e) High permeability

d) All of the mentioned

9. Which of the following group of material type is used in mold making?

a) Metallic only

b) Non-Metallic only

Both metallic as well as non-metallic

d) Neither metallic nor non-metallic

10. How many types of nucleation process are there and what are they?

a) 2 and (fusion and fission)

b) 2 and (Heterogeneous and Homogeneous)

2 and (Heterogeneous and fusion)

d) 4 and (fusion, fission, Heterogeneous and Homogeneous) View Answer

11. What reactions come under supercooling?

a) Peritectic

b) Eutectic and Peritectic

c) Eutectic and Eutectoid

d) Peritectic and Eutectoid

12. Which is the most important thermodynamic parameter in Homogenous nucleation?

(a) Free energy G

b) Enthalpy H

c) Entropy S

d) Free energy G, Enthalpy H, Entropy S

View Answer

13. What does phase transformation involve?

a) Transformation rates kinetics

b) Movement/rearrangement of atoms

c) Changes in microstructure

(d) Transformation rate kinetics, rearrangement of Atoms, Changes in microstructure

14 What is the full form of ASTM2

a) American society for testing and materials

b) African society for testing and materials

c) American society for torque and momentum forces

d) American society for tensile motion forces

15. Which of the following is not the structural characteristic of a polycrystalline specimen?

a) Shape

b) Average size

Dr. LEENA A. V. PRINCIPAL SREE NARAYANA GURU COLLEGE O INGINEERING & TECHNOLOGY, PAYYAN KANNUR c) Reactivity

d) Diameter

16. Which of the following refers to the term C.O.P. of refrigeration?

a) Cooling for Performance

b) Coefficient of Performance

c) Capacity of Performance

d) Co-efficient of Plant

17. Why sustainable manufacturing is required?

a) proper maintenance

b) reuse

c) conserving resources

d) all of the mentioned

18. Which of the following is a thermodynamics law?

a) Zeroth law of thermodynamics

b) Faraday's Law of thermodynamics

(Ideal Gas Law of thermodynamics

d) Boyle's Law of thermodynamics

19 Which of the following systems produce a vibration in the foundation?

a) Unbalanced machine

b) Balanced machine

c) Coupled machine

d) Uncoupled machine

20. Which of the following is a type of fluid based on viscosity?

a) Real Fluid

(Jo) Ideal Fluid

c) Newtonian Fluid

d) All of the mentioned

21. The viscous force the relative motion between the adjacent layers of a fluid in motion. Which of the following flowing fits best in the sentence?

a) never affects

b) may effect under certain conditions

c) facilitates

d) opposes

View Answer

22. Pressure intensity or force due to pressure gradient for fluid at rest is considered as which of the following kind of force?

a) Body force

b) Force due to motion

Surface force

d) None of the mentioned

Dr. LEENA A. V. PRINCIPAL SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY, PAVYAN KANNUR 23. The enthalpy and internal energy are the function of temperature for

a) all gases

b) steam

c) water

d) ideal gas

24. In which of the following systems does mass transfer occur across the system boundary?

a) isolated system

b) closed system

c) open system

d) none of the mentioned

25. When more than one fluid stream enters or leaves the control volume, which of the following type of balance is taken?

a) mass balance

b) energy balance

c) mass balance and energy balance

d) none of the mentioned

Dr. LEENA A. V. PRINCIPAL SREE NARAYANA GURU COLLEGE C -NGINEERING & TECHNOLOGY, PAYYAM KANNUR

Vojol P

SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING

MOCK TEST 1

- 1. What is fluid mechanics?
- a) Study of fluid behaviour at rest
- b) Study of fluid behaviour in motion
- c) Study of fluid behaviour at rest and in motion
- d) Study of fluid behaviour at rest and in motion

- 2. Which of the following is the basic principle of fluid mechanics?
- a) Momentum principle
- b) Energy equation
- c) Continuity equation
- d) All of the mentioned

3. Stress strain curve for cemented tungsten carbide is:

- a) Hyperbola
- b) Parabola
- c) A curve ~
- d) Straight line

4. Which of the following relation is stated by Hooke's law?

a) Stress is directly proportional to strain ~

- b) Stress is inversely proportional to strain
- c) Stress is directly proportional to square of strain
- d) Stress is inversely proportional to square of strain

5. Which of the following is an application of thermodynamics?

- a) Refrigerators
- b) Gas compressors
- c) Power plants
- d) All of the mentioned \checkmark

6. Which of the following is a type of thermodynamic system?

- a) Open system
- b) Closed system
- c) Thermally isolated system
- d) All of the mentioned \checkmark

7. Which of the following occurs without a change in the internal energy?

- a) Isochoric process
- b) Isenthalpic process~

Dr. LEENA A. V. PRINCIPAL SREE NARAYANA GURU COLLEGE C -NGINEERING & TECHNOLOGY, PAYYAN KANNUR c) Steady-state process

d) Isenthalpic process

8. Which of the following properties must a material possess to be used in mold making?

a) High refractoriness

b) Chemical and thermal stability

c) High permeability ~

d) All of the mentioned

9. Which of the following group of material type is used in mold making?

a) Metallic only ✓

b) Non-Metallic only

c) Both metallic as well as non-metallic.

d) Neither metallic nor non-metallic

10. How many types of nucleation process are there and what are they?

a) 2 and (fusion and fission) \checkmark

b) 2 and (Heterogeneous and Homogeneous)

c) 2 and (Heterogeneous and fusion)

d) 4 and (fusion, fission, Heterogeneous and Homogeneous)

View Answer

11. What reactions come under supercooling?

a) Peritectic

b) Eutectic and Peritectic

c) Eutectic and Eutectoid

d) Peritectic and Eutectoid

12. Which is the most important thermodynamic parameter in Homogenous nucleation?

a) Free energy G

b) Enthalpy H

c) Entropy S ~

d) Free energy G, Enthalpy H, Entropy S

View Answer

13. What does phase transformation involve?

a) Transformation rates kinetics

b) Movement/rearrangement of atoms

c) Changes in microstructure 🗸

d) Transformation rate kinetics, rearrangement of Atoms, Changes in microstructure

14. What is the full form of ASTM?

a) American society for testing and materials ~

b) African society for testing and materials

c) American society for torque and momentum forces

d) American society for tensile motion forces

15. Which of the following is not the structural characteristic of a polycrystalline specimen?

a) Shape

b) Average size

-NGINEERING

c) Reactivity~ d) Diameter

16. Which of the following refers to the term C.O.P. of refrigeration?

a) Cooling for Performance

b) Coefficient of Performance

c) Capacity of Performance

d) Co-efficient of Plant

17. Why sustainable manufacturing is required?

a) proper maintenance

b) reuse

c) conserving resources v

d) all of the mentioned

18. Which of the following is a thermodynamics law?

a) Zeroth law of thermodynamics ~

b) Faraday's Law of thermodynamics

c) Ideal Gas Law of thermodynamics

d) Boyle's Law of thermodynamics

19. Which of the following systems produce a vibration in the foundation?

a) Unbalanced machine

b) Balanced machine

c) Coupled machine

d) Uncoupled machine

20. Which of the following is a type of fluid based on viscosity?

a) Real Fluid

b) Ideal Fluid

c) Newtonian Fluid

d) All of the mentioned `

21. The viscous force the relative motion between the adjacent layers of a fluid in motion. Which of the following flowing fits best in the sentence?

a) never affects

b) may effect under certain conditions/

c) facilitates

d) opposes

View Answer

22. Pressure intensity or force due to pressure gradient for fluid at rest is considered as which of the following kind of force?

a) Body force

b) Force due to motion

c) Surface force

d) None of the mentioned

Dr. LEENA A. V. PRINCIPAL SREE NARAYANA GURU COLLEGE C ENGINEERING & TECHNOLOGY, PAYYAM KANNUR 23. The enthalpy and internal energy are the function of temperature for

a) all gases "/

b) steam

c) water

d) ideal gas -

24. In which of the following systems does mass transfer occur across the system boundary?

a) isolated system

b) closed system

c) open system

d) none of the mentioned

25. When more than one fluid stream enters or leaves the control volume, which of the following type of balance is taken?

a) mass balance

b) energy balance

c) mass balance and energy balance-

d) none of the mentioned

Dr. LEENA A. V. PRINCIPAL SREE NARAYANA GURU COLLEGE C -NGINEERING & TECHNOLOGY, PAYYAM KANNUR

1	1						4	fbho	ram 3	
	1							S	5	
	A STATIST	SREE NAR	AYA	ANA GU	RU COLL	EGE	OF ENGINEE	RING	& TECHNOLOGY	No.
	Free Names and The State and T	Network	Dł	EPARTN	IENT OF M	MEC OCF	HANICAL EN K TEST 2	GINEI	ERING	
									16	
1.	The	slope of the surface z	= xe ⁻	-y + 5y in t	he x-direction	n at th	e point (4,0) is		20	
	a)	0	b)	-1		cx	1	d)	2	
2.	The s	solution of		is		/				
	a)	$c_1 \cos x + c_2 \sin x$	b)	$c_1e^x+c_2$	2e ^{-x}	c)	$(c_1+c_2x)e^x$	d) v	$(c_1+c_2x)e^{-x}$	
3.	A sir mass	nple spring mass vibra is doubled then the n	ating atura	system has I frequency	s a natural fre will be	quenc	y of N. if the spring	stiffne:	ss is halved and the	
	a)	Ν	b)	0.5N		c)	2N	d)	0.25N	
4.	The precta	proportion of second r ngle will be	nome	ent of area	about centroi	idal ax	is to second momer	nt of are	a about base of a	
	a	0.3	b)	0.1		c)	0.25	d)	0.08333	
5.	An <u>a</u>	lgorithm for schedulir	ng a s	et of proje	ct activities:		•			
	a)	Critical Path Method	b)	Crucial P Method	Practicing	c).	Centre Processing Method	d)	None	
6.	The f	fundamental rethinkin al contemporary meas	g and sures	l radical re of perform	design of the nances such a	busin s cost,	ess process to achie quality,service and	ve dram speed:	atic improvements in	
	a)	Recycling	b)	Quality e	ngineering	c)	Contemporary design	d)	Re - engineering	
7.	Com	posting is								
	a)	anaerøbic degradation	b)	anaerobio	c treatment	c)	aerobic treatment	d)	an aerobic degradation process	

7

leur

Dr. LEENA A. V. PRINCIPAL SREE NARAYANA GURU COLLEGE O INGINEERING & TECHNOLOGY, PAYYANG KANNUR

		process for solid waste treatment		for sullage		for sewage		for solid waste treatment
8.	The r	ating system of Indi	a whic	h is focussed on conse	rvation	and efficient energ	y use is	
	a)	GRIHA	b)	LEED India	c)	IGBC	(ك	BEE
9.	In ort	hographic projectio	n, each	projection view repre	sents h	ow many dimension	s of an o	bject?
	a)	1	b)	2	c)_	3	d)	0
10.	The f	ront view, side view	and to	p view of a cylinder s	tanding	on horizontal plane	e base on	horizontal plane.
	a)	circle, rectangle and rectangle	b)	rectangle, rectangle and circle	c)	rectangle, eircle and rectangle	d)	circle, triangle and triangle
				PART B- CO	RE CO	URSES		
11.	Attractiv	ve forces between n	netal io	ns and delocalized ele	ctrons o	can be weakened or	overcom	ie by
	a)	hammer	b)	high temperature	2	water	d)	All of above
						-		
12.	Crystall	ine solids can be red	cognize	d by their				
	a	low boiling point	b)	sharp melting point	c)	colour	d)	moderate melting
						~		point
13.	Anneali	ng of steel is done to	o impai	rt which of the followi	ng prop	perties to steel?		
	a)	Hardness	b)	Toughness	c)	Ductility	(ف	None of the mentioned
14.	Major c	onstituent of the gui	n metal	alloy is	/			
	(a)	Copper	b)	Nickel	c)	Iron	d)	Zinc
15.	Which f	errous material does	sn't sho	w fatigue limit?		~		
	a)	Cast iron	b)	Wrought iron	ć)	Austenitic stainles	s d)	Low carbon steel
16.	Which o	of the following met	hods of	f melting is not used for	or melti	ng titanium metal?		
	a)	Induction method	b)	Vaeuum arc method	c)	Electron beam melting	d)	Cupola furnace melting
17.	A turbin	e is called impulse	if at the	inlet of the turbine				
	a)	Total energy is only pressure	b)	Total energy is only kinetic energy	c)	Total energy is the sum of kinetic	d)	None of the above
		energy	4			energy and pressure	e	
			V			0.1015)	X	un
							RINCI	A A.V. PAL
						NGINEERIN	G & TECHN	OLOGY, PAYYANI

18. Find the overall efficiency of a turbine if the mechanical efficiency is 80% and hydraulic efficiency is 90%

b) 90 · a) 88 c) 72 d) 30 19. In a centrifugal pump casing, the flow of water leaving the impeller is A) Rectilinear flow b) Radial flow c) Forced vortex flow d) Free vortex flow 20. Hydraulic accumulator is a device used for Storing the energy of Transmitting power a) Lifting heavy Increasing pressure d) b) c) weights a fluid in the form of intensity of a fluid from one shaft to

pressure energy

another shaft

Dr. LEENA A. V. PRINCIPAL SREE NARAYANA GURU COLLEGE C. -NGINEERING & TECHNOLOGY, PAYYAN KANNUR

SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING MOCK TEST 2

Granesh R. V So

1.	The	slope of the surfa	ace $z = xe$	-y + 5y in the x-directi	on at th	e point (4,0) is		12
	a)	0	b)	-1	w)	1 -	d)	2 20
2.	The	solution of		is			/	
	a)	$c_1 \cos x + c_2 s$	inxb)	$c_1e^x + c_2e^{-x}$	c)	$(c_1+c_2x)e^{x}$	له ال	$(c_1 + c_2 x)e^{-x}$
3.	A sir mass	mple spring mass is doubled then	vibrating	system has a natural f al frequency will be	requenc	y of N. if the s	pring stiffne	ess is halved and the
	a)	Ν	b)	0.5N	-c)	2N	d)	0.25N
4.	The recta	proportion of sec ingle will be	cond mom	ent of area about centre	oidal ax	tis to second m	oment of ar	ea about base of a
	a)	0.3	b)	0.1	c)	0.25	d)	0.08333
5.	An <u>a</u>	lgorithm for sch	eduling a	set of project activities	:			
	a)	Critical Path Method	b)	Crucial Practicing Method	c)	Centre Proce	ssing d)	None
6.	The critic	fundamental reth cal contemporary	inking an measures	d radical redesign of the of performances such	e busin as cost	ess process to quality,service	achieve drar e and speed:	natic improvements in
	a)	Recycling	b)	Quality engineering	c)	Contemporar design	y d)	Re - engineering
7.	Com	posting is						
	a)	anaerobic degradation	b)	anaerobic treatment	c)	aerobic treati	nent d)	an aerobic degradation process

en

Dr. LEENA A. V PRINCIPAL SREE NARAYANA GURU COLLEGE C -NGINEERING & TECHNOLOGY, PAYYAN KANNUR

		process for solid waste treatment		for sullage		for sewage		for solid waste treatment
8.	The r	ating system of India	whic	h is focussed on conserv	vation	and efficient energy	use is	
	a)	GRIHA	b)	LEED India	c)	IGBC	<u>d)</u>	BEE
9.	In ort	hographic projection.	, each	projection view represe	ents h	ow many dimensions	of an o	bject?
	a)	1	b)	2	0)	3	d)	0
10.	The f	ront view, side view	and to	op view of a cylinder sta	inding	on horizontal plane	base on	horizontal plane.
	a	circle, rectangle and rectangle	b)	rectangle, rectangle and circle	c)	rectangle, circle and rectangle	d)	circle, triangle and triangle
				PART B- COR	E CC	URSES		
11.	Attractiv	ve forces between me	etal io	ns and delocalized elect	rons	can be weakened or o	vercom	ne by
	a)	hammer	b)	high temperature	c)	water	d)	All of above
12.	Crystall	ine solids can be reco	ognize	d by their				
	a)	low boiling point	b)	sharp melting point	C)	colour	d)	moderate melting point
13.	Anneali	ng of steel is done to	impa	rt which of the following	g proj	perties to steel?		
	a)	Hardness	b)	Toughness	c)	Ductility	_d)_	None of the mentioned
14.	Major c	onstituent of the gun	metal	alloy is				
	a)	Copper	b)	Nickel 4	c)	Iron	d)	Zinc
15.	Which f	errous material doesr	n't she	ow fatigue limit?				
	a)	Cast iron	b)	Wrought iron	c)	Austenitic stainless steel	d)~	Low carbon steel
16.	Which o	of the following meth	ods o	f melting is not used for	melt	ing titanium metal?		
	a)	Induction method	b)	Vacuum arc method	c)	Electron beam melting	d)	Cupola furnace melting
17.	A turbin	e is called impulse if	at the	e inlet of the turbine				
	a)	Total energy is only pressure energy	b)	Total energy is only kinetic energy	c) 4	Total energy is the sum of kinetic energy and pressure energy	d)	None of the above
							RAYANA G	IPAL URU COLLEGE UNOLOGY, PAYYAN

18. Find the overall efficiency of a turbine if the mechanical efficiency is 80% and hydraulic efficiency is 90%

a) 88 b) 90 e) 72 d) 30

19. In a centrifugal pump casing, the flow of water leaving the impeller is

a) Rectilinear flow b) Radial flow

c) Forced vortex flow

20. Hydraulic accumulator is a device used for

a) Lifting heavy weights b) Storing the energy of a fluid in the form of pressure energy c) Increasing pressure intensity of a fluid d) Free vortex flow

 d) Transmitting power from one shaft to another shaft

Dr. LEENA A. V PRINCIPAL SREE NARAYANA GURU COLLEGE U -NGINEERING & TECHNOLOGY, PAYYAN KANNUR

	A STATE	SREE NAR	AY	ANA GURU COLLI	EGE	OF ENGINEER	ING	& TECHNOLOGY
	Bein Karayana Ga af Englacethe and	a Cale	DI	EPARTMENT OF M M	AEC OCF	HANICAL ENG	INEF	ERING
								6
1.	The	slope of the surface z	= xe ⁻	$y^{-y} + 5y$ in the x-direction	at th	e point (4,0) is		20
	a)	0	b)	J	c)	1	d)	2
2.	The	solution of		is		1		
	a)	$c_1 \cos x + c_2 \sin x$	b)	$c_1e^x + c_2e^{-x}$	c)	$(c_1+c_2x)e^x$	d)	$(c_1+c_2x)e^{-x}$
3.	A sin mass	nple spring mass vibra is doubled then the n	ating atura	system has a natural free l frequency will be	quenc	ey of N. if the spring s	tiffnes	ss is halved and the
	a)	N	b)	0.5N	c)/	2N	d)	0.25N
4.	The precta	proportion of second r ngle will be	nom	ent of area about centroid	dal ax	tis to second moment	of are	a about base of a
	a)	0.3	b)	0.1	c)	0.25	d)	0.08333
5.	An <u>a</u>	lgorithm for schedulir	ng a s	et of project activities:				
	a)	Critical Path Method	b)	Crucial Practicing Method	c)	Centre Processing Method	d)	None
6.	The f	fundamental rethinkin al contemporary meas	g and sures	l radical redesign of the l of performances such as	busin cost	ess process to achieve quality,service and sp	dram beed:	atic improvements in
	a)	Recycling	b)	Quality engineering	c)	Contemporary design	d)	Re - engineering
7.	Com	posting is		1		<u>.</u>		
	a)	anaerobic degradation	b)	anaerobic treatment	ç)	aerobic treatment	d)	an aerobic degradation process

un

Vijil P

PRINCIPAL PRINCIPAL SREE NARAYANA GURU COLLEGE C -NGINEERING & TECHNOLOGY, PAVVA KANNUR

	process for solid waste treatment			for sullage		for sewage		for solid waste treatment	
8.	The rating system of India which is focussed on conservation and efficient energy use is								
	a)	GRIHA	b)	LEED India	c)	IGBOY	d)	BEE	
9.	In ort	hographic projec	ction, each	projection view r	epresents he	ow many dimensior	ns of an o	object?	
	a)	1	b)	2	t c)	3	d)	0	
10.	The front view, side view and top view of a cylinder standing on horizontal plane base on horizontal plane.								
	a)	circle, rectangle and rectangle	e b)	rectangle, rectan and circle	gle c) +	rectangle, circle	d)	circle, triangle and triangle	
				PART B-	CORE CO	URSES			
11.	Attractiv	ve forces betwee	n metal ior	ns and delocalized	d electrons o	can be weakened or	overcon	ne by	
	a)	hammer	b)	high temperature	e c)	water	d)	All of above	
12.	Crystall	ine solids can be	recognize	d by their					
	a)	low boiling poi	nt b)	sharp melting po	oint c)	colour	d)	moderate melting point	
13.	Anneali	ng of steel is dor	ne to impar	t which of the fol	llowing prop	perties to steel?			
	a)	Hardness	b)-	Toughness	c)	Ductility	d)	None of the mentioned	
14.	Major c	onstituent of the	gun metal	alloy is					
	a)	Copper	b)	Nickel	c)	Iron	d)	Zinc	
15.	Which ferrous material doesn't show fatigue limit?								
	a)	Cast iron	(b)	Wrought iron	c)	Austenitic stainle steel	ss d)	Low carbon steel	
16.	Which c	of the following	methods of	melting is not us	sed for melti	ing titanium metal?			
	a)	Induction method	b)	Vacuum arc me	ethod c)	Electron beam melting	d)	Cupola furnace melting	
17.	A turbin	e is called impu	lse if at the	inlet of the turbi	ne	1			
	a)	Total energy is only pressure energy	b)	Total energy is a kinetic energy	only c)	Total energy is the sum of kinetic energy and pressur energy	e d) re	None of the above	
						0.	1		
						-NGIN	Dr. LER PRIME ENARAYAN EERING & TI	ENA A. V. JCIPAL A GURU COLLEGE CO ECHNOLOGY, PAYYAMUR ANNUR	

18. Find the overall efficiency of a turbine if the mechanical efficiency is 80% and hydraulic efficiency is 90%

a) 88

c)

d) 30

19. In a centrifugal pump casing, the flow of water leaving the impeller is

b) 90

a) Rectilinear flow b)

- b) Radial flow
- c) Forced vortex flow
- d) Free vortex flow

20. Hydraulic accumulator is a device used for

- a) Lifting heavy weights
- b) Storing the energy of a fluid in the form of pressure energy
- c) Increasing pressure intensity of a fluid
- d) Transmitting power from one shaft to another shaft

Dr. LEENA A. V. PRINCIPAL SREE NARAYANA GURU COLLEGE C -NGINEERING & TECHNOLOGY, PAYYAN KANNUR

SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING

MOCK TEST 3

1)In a ------ system, there is no exchange of matter, but the exchange of energy is possible between system and the surrounding

A.isolated

B.closed

C)adiabatic

D)More than one of the above

2) The efficiency of the Ericsson cycle is...... Carnot cycle

A.Greater than

B.Less than

C.Equal to

D.None of the above

3) Gas laws are applicable to......
A.Gases as well as vapours
B.Gases alone and not to vapours
C.Gases and steam
D.Gases and vapours under certain conditions

4). General gas equation is..... A.PV = nRT B.PV = mRT C.PVⁿ = C D.C_p - C_v = R/J

Which of the following laws is applicable for the behaviour of perfect gas
 A.Boyle's law
 B.Charle's law

C.Gas-Lussac law DAll of the above

6)When a body floating in a liquid, is displaced slightly, it oscillates about A. C.G. of body

B. Center of pressure

C. Center of buoyancy

D. Metacentre

20

Dr. LEENA A. V. PRINCIPAL SREE NARAYANA GURU COLLEGE C -NGINEERING & TECHNOLOGY, PAYYAN KANNUR 7) The pressure of the liquid flowing through the divergent portion of a Venturimeter A. Remains constant

B. Increases

C Decreases

D. Depends upon mass of liquid

8)When the Mach number is between ______ the flow is called super-sonic flow. A. 1 and 2.5

B. 2.5 and 4

C. 4 and 6

D. 1 and 6

9)Steady flow occurs when A. The direction and magnitude of the velocity at all points are identical

B. The velocity of successive fluid particles, at any point, is the same at successive periods of time

C. The magnitude and direction of the velocity do not change from point to point in the fluid

D. The fluid particles move in plane or parallel planes and the streamline patterns are identical in each plane

10)A fluid which obeys the Newton's law of viscosity is termed as A. Real fluid

B. Ideal fluid

. Newtonian fluid

D. Non-Newtonian fluid

11). Hooke's law essentially defines

A. Stress

B. Strain

C. Yield point

D. Flastic limit

Dr. LEENA A. V. PRINCIPAL SKEE NARAYANA GURU COLLEGE C -NGINEERING & TECHNOLOGY, PAYYA KANNUR 12) The ratio of the change in dimension at right angles to the applied force to the initial dimension is known as

- A. Youngs' modulus
- B. Pøisson's ratio
- C Lateral strain
- D. Shearing strain

13) Substances that can be stretched to cause large strains are called

- A. Brittle
- B. Ductile
- C. Plastic
- D. Elastomer

14)Volumetric Strain is

(a)Increase in length / original length

(b)Decrease in length / original length

(c)Change in volume / original volume

(d)All of the above

15) Poisson's ratio is

A)Lateral strain / Longitudinal strain,

b. Shear strain / Lateral strain

c. Longitudinal strain / Lateral strain

d. Lateral strain / Volumetric strain

16) 5. Pick the composite from the list

(a) Wood

(b) Steel

(c) Nylon

(d) Mica

Dr. LEENA A. V. PRINCIPAL SREE NARAYANA GURU COLLEGE C NGINEERING & TECHNOLOGY, PAYYAN KANNUR 17) Repeatable entity of a crystal structure is known as

a) Crystal

b) Lattice

C Unit cell

d) Miller indices

18)Coordination number for closest packed crystal structure

a) 16-

\$ 12

c) 8

d) 4

19)Atomic packing factor is

a) Distance between two adjacent atoms

b) Projected area fraction of atoms on a plane

c) Volume fraction of atoms in cell

d)None

20. Coordination number in simple cubic crystal structure

a) 1 b) 6 c) 3 d)4

Dr. LEENA A. V. PRINCIPAL SREE NARAYANA GURU COLLEGE C NGINEERING & TECHNOLOGY, PAYYAN KANNUR

SREE NARAYANA GURU COLLEGE OF ENGINEERING & TECHNOLOGY

DEPARTMENT OF MECHANICAL ENGINEERING MOCK TEST 3

1)In a ------ system, there is no exchange of matter, but the exchange of energy is possible between system and the surrounding

A.isolated

B.closed

C)adiabatic

D)More than one of the above

at

2)The efficiency of the Ericsson cycle is......Carnot cycle A.Greater than B.Less than

C.Equal to D.None of the above

3) Gas laws are applicable to.....

A.Gases as well as vapours

B.Gases alone and not to vapours

C.Gases and steam

D.Gases and vapours under certain conditions

4). General gas equation is..... A.PV = nRT B.PV = mRT C.PVⁿ = C D.C_p - C_v = R/J

5) Which of the following laws is applicable for the behaviour of perfect gas

A.Boyle's law B.Charle's law C.Gas-Lussac law D.All of the above

6)When a body floating in a liquid, is displaced slightly, it oscillates about A. C.G. of body

B. Center of pressure

C. Center of buoyancy

D. Metacentre

Dr. LEENA A. V. PRINCIPAL SREE NARAYANA GURU COLLEGE C NGINEERING & TECHNOLOGY, PAYYA KANNUR 7) The pressure of the liquid flowing through the divergent portion of a Venturimeter A. Remains constant

B. Increases

C. Decreases

D. Depends upon mass of liquid

8)When the Mach number is between ______ the flow is called super-sonic flow. A. 1 and 2.5

B 2.5 and 4

C. 4 and 6

D. 1 and 6

9)Steady flow occurs when

A. The direction and magnitude of the velocity at all points are identical

B. The velocity of successive fluid particles, at any point, is the same at successive periods of time

C. The magnitude and direction of the velocity do not change from point to point in the fluid

D. The fluid particles move in place or parallel planes and the streamline patterns are identical in each plane

10)A fluid which obeys the Newton's law of viscosity is termed as A. Real fluid

B. Ideal fluid

C. Newtonian fluid

D. Non-Newtonian fluid

- 11). Hooke's law essentially defines,
 - A. Stress
 - B. Strain
 - C. Yield point
 - D. Elestic limit

Dr. LEENA A. V. PRINCIPAL SREE NARAYANA GURU COLLEGE O NGINEERING & TECHNOLOGY, PAYVAL KANNUR 12) The ratio of the change in dimension at right angles to the applied force to the initial dimension is known as

A. Youngs' modulus

B. Poisson's ratio

C. Lateral strain

D. Shearing strain

13) Substances that can be stretched to cause large strains are called

- A. Brittle
- B. Ductile

C. Plastic

D. Elastomer

14)Volumetric Strain is

(a)Increase in length / original length

(b)Decrease in length / original length

(c)Change in volume / original volume

(d)All of the above

15) Poisson's ratio is

a)Lateral strain / Longitudinal strain

b. Shear strain / Lateral strain

c. Longitudinal strain / Lateral strain

d. Lateral strain / Volumetric strain

16) 5. Pick the composite from the list

(a) Wood

(b) Steel

(c) Nylon

(d) Mica

Dr. LEENA A. V. PRINCIPAL SREE NARAYANA GURU COLLEGE C -NGINEERING & TECHNOLOGY, PAYYANU KANNUR 17) Repeatable entity of a crystal structure is known as

a) Crystal

b) Lattice

c) Unit cell

d) Miller indices

18)Coordination number for closest packed crystal structure

a) 16 b) 12 c) 8

0,0

d) 4

19)Atomic packing factor is

a) Distance between two adjacent atoms

b) Projected area fraction of atoms on a plane

c). Volume fraction of atoms in cell

d)None

20. Coordination number in simple cubic crystal structure

2/1

b) 6

c) 3

d)4

Dr. LEENA A. V. PRINCIPAL SREE NARAYANA GURU COLLEGE U NGINEERING & TECHNOLOGY, PAYYA KANNUR